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Abstract

Objective: We consider the need for a modeling framework for related in-
dividuals and various sources of variations. The relationships could either
be among relatives in families or among unrelated individuals in a general
population with cryptic relatedness; both could be refined or derived with
whole genome data. As with variations they can include oliogogenes, poly-
genes, single nucleotide polymorphism (SNP) and covariates. Methods: We
describe mixed models as a coherent theoretical framework to accommodate
correlations for various types of outcomes in relation to many sources of vari-
ations. The framework also extends to consortium meta-analysis involving
both population-based and family-based studies. Results: Through exam-
ples we show that the framework can be furnished with general statistical
packages whose great advantage lies in simplicity and flexibility to study
both genetic and environmental effects. Areas which require further work
are also indicated. Conclusion: Mixed models will play an important role
in practical analysis of data on both families and unrelated individuals when
whole genome information is available.
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1 Introduction

Genomewide association studies (GWASs) have successfully identified many
genetic variants consistently associated with human diseases or other traits.
Both unrelated individuals in a population or related individuals in families
have been involved in such studies. There is a variety of issues which merit
further consideration.

Our concern here is on correlations among individuals, which are “the cen-
tral piece of information” [1] in detection and characterization of gene-trait
association. Consideration of these correlations has traditionally limited to
family data whose critical role in genetic epidemiological study ranges from
familial aggregation, segregation, linkage to association [2], and special at-
tention is required in the analysis compared to unrelated individuals from a
population. Correlations arise naturally among relatives but can be relevant
to population-based study as well given that relatedness can also be estab-
lished among unrelated individuals based on whole-genome data in GWASs
[3]. The correlations are linked to a long attempt to model influence of mul-
tiple genes on a specific phenotype. Specifically, Fisher [4] assumed that a
quantitative trait results from many genes with variable small to moderate
effects. Concrete evidence of multiple genetic influence has been revealed by
recent waves of GWASs on height [5], blood pressure [6], lipids [7], obesity [8],
etc., leading to the note in [9]. Gene-environment interaction and common
environment can be considered similarly.

There is a relatively small literature in human genetics to iterate mixed
models to account for heterogeneity among groups of individuals compared to
the general statistics literature where genetic applications been acknowledged
[10, pp190-192][11, pp4864-4871]. This is likely due to the complexity with
a generic implementation. We therefore conduct a survey of the framework
with exploration of general software environments. As will be seen below,
it readily applies to human genetics when correlations within these groups
are explicitly modeled. The familiar form accommodate effects of major or
oligogenes, polygenes, common environment, and unique environment, which
collectively contribute to variance of the trait and known as “variance com-
ponent models” [12, 13]. For instance, individuals’ body weight (kg) divided
by height2(m2), referred as body mass index (BMI, kg/m2) and commonly
used as surrogate of obesity, varies with the broad heritable background of
individuals (polygenes), sex, age, family membership, susceptible genes such
as FTO [14] (which has a major effect serving an example of oliogene), where
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sex and age can be considered as fixed effects while variability attributable to
(expected) correlation between members of family as with FTO are random
effects [15, 16, 17, 18]. The flexibility of such a framework may be missing in
various computer programs1. As for outcome of interest, it is usually quan-
titative or binary traits, with [19] as an exception. The implementation we
consider will be SAS 2 [20] and R3 [21] with a Cox model counterpart [22]. A
note on Bayesian counterpart is also ready [23, 24, 25]; especially for linkage
[1], association [26] and implementation in Morgan. To save space, we con-
sequently omit reference to programs when they are available from the lists
given here.

We attempt to connect various models in our survey paying special at-
tention to their use in data analysis. We show that with generic facilities as
available from R, we can accommodate additional outcomes such as count,
survival, as well as account for information such as identity-by-descent (IBD)
or common environment. We will illustrate with the family data available
to genetic analysis workshops (GAWs)4 16 and 17. We will also discuss
the implications of whole genome data availability via connection to earlier
literature.

2 Models

As will soon become clear, the framework is essentially motivated from
the usual general linear model (GLM) or generalized linear mixed model
(GLMM) allowing for correlated random effects, including the Cox regres-
sion model. We will briefly describe the models as an analogy between GLM
and GLMM but will not go into details of their estimation procedures, as
both are widely available.

2.1 GLM

We start from the usual GLM disregarding familial correlations. Let the
phenotypes of n individuals in a family be (y1, . . . , yn), its distribution is

1See http://linkage.rockefeller.edu
2See http://www.sas.com
3See http://www.r-project.org
4See http://www.gaworkshop.org
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exponential

f(yi, θi, ϕ) = exp

[
yiθi − bi(θi)

ϕ
+ c(yi, ϕ)

]
(1)

where b(.) and c(.) are known functions, ϕ a scale or dispersion parameter.
Furthermore, let E[yi] = µi and let this be connected to a linear predictor
using link function g(.) by ηi = g(µi) = Xiβ where Xi is a vector of covariates
and β the regression coefficient(s). For simplicity, only canonical link is used
so that θi = µi. It can be shown [27] that the expectation E(yi) = µi = b′(θi)
and variance V (yi) = ϕb′′(θi). Some special cases as with their properties
are well-recognized [28], for which models involving continuous and binary
outcomes are most common:

Normal: yi ∼ N(µi, σ
2
i ), we have θi = µi, b(θi) = θ2

i /2, ϕ = σ2
i , b

′(θi) =
θi, ϕb

′′(θi) = σ2
i and an identity link.

Binomial: yi ∼ Binom(n, µi), θ(µi) = ln(µi/(1 − µi)), b(θi) = ln(1 +
exp(θi)), ϕ = 1/n, b′(θi) = exp(θi)/(1 + exp(θi)), ϕb

′′(θi) = µi(1−µi)/n, and
a logit link g(µi) = ln(µi/(1− µi)).

Analysis of censored survival data can be molded into the framework
[29]. Let ti denote the event time, ci the censoring time and δi = I(ti ≤
ci) the event indicator for unit i, i = 1, . . . , n, the basic Cox model with
vector of explanatory variables Xi is specified via a hazard function λi(t) =
λ0(t) exp(Xiβ), where λ0(t) is the baseline hazard function. The partial
likelihood (PL) for the standard Cox model can be expressed in (2).

PL(β) =
n∏
i=1

[
exp(Xiβ)∑

j∈R(ti) exp(Xjβ)

]δi
(2)

where n failure times have been ordered such that t1 < . . . < tn and R(ti) is
the “risk set”, the number of cases that are at risk of experiencing an event
at time ti.

Although GLM lays the foundation in many applications of general statis-
tics, it largely serves a motivating role for models that are capable to account
for familial correlations. As shown below, this is achieved with introduction
of (correlated) random effects as in GLMM but it is also linked with other
models.
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2.2 GLMM

We now consider model involving individual i, i = 1, . . . , N where N is the
total number of individuals in our sample.

Polygene

Let P denote the polygene representing independent genes of small effect,
which follows a multivariate normal distribution with covariance matrix

g(µi) = Xiβ + Pi (3)

The likelihood for all relatives is furnished with specification of the distribu-
tion of P = (P1, . . . , PN) with covariance

ΣP = 2Φσ2
P (4)

where Φ ≡ {φij}n×n and φij is the kinship coefficient, defined such that
given two individuals, one with genes (gi, gj) and the other with genes (gk,
gl), the quantity is 1

4
(P (gi ≡ gk) + P (gi ≡ gl) + P (gj ≡ gk) + P (gj ≡ gl))

where ≡ represents probability that two genes sampled at random from each
individual are IBD. The kinship coefficients for MZ twins, DZ twins/full-sibs,
parent-offspring, half-sibs and unrelated individuals are 0.5, 0.25, 0.25, 0.125
and 0, respectively.

The likelihood function for model (3) has the following form,

L(y1, . . . , yN) =
∫
L(y|P )L(P )dP (5)

where L(y|P ) =
∏N
i=1 f(yi|P ) and L(P ) =

(√
2π|ΣP |

)−1
exp

[
−P ′Σ−1

P P/2
]

only involves with random effects, noting that it is assumed that given ran-
dom effects in the model, the phenotypic values among n relatives are inde-
pendent and that the parameters of interest in (4) are the variances involving
polygene (σ2

P ). Regarding the statistical inference of random effects, since
the parameter under the null hypothesis is on the boundary of the parameter
space, the test for a specific σ2

k = 0, likelihood ratio statistic testing for the
hypothesis that H0 : σ2

P = 0 vs HA : σ2
P > 0 for is referred to a 0.5χ2

0 + 0.5χ2
1

distribution or a score statistic as outlined in [19][11, p2961].
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Oligogene

Suppose that a major gene M is also involved, independently and normally
distributed with mean 0 and variances σ2

M , then the covariance matrix has
the form

ΣM = σ2
MΠ (6)

where Π ≡ {πij}N×N in which πij is the proportion of alleles shared (IBD)
at the major gene between relatives i and j which can be estimated from a
multipoint data. so that it acts additively with polygene P , the likelihood is
furnished with an extended covariance

ΣM,P = ΣM + ΣP (7)

For a test of a strictly positive variance associated with a polygene versus
polygene and an oligogene, the log likelihood ratio test statistic is referred
to 0.5χ2

1 + 0.5χ2
2 [30].

Multiple random effects

The framework in (3) includes the common distributions such as normal,
gamma, binomial and Poisson as special cases. For simplicity, we consider a
quantitative trait, whose probability density function is normal and a statis-
tical model is as follows

y = Xβ + U + ε (8)

and U ∼ N(0,Σ), ε ∼ N(0, σ2), Cov(U, ε) = 0. The expression of Σ−1

relative to the precision 1/σ2 of ε as a Cholesky factorization ∆′∆, i.e.,
Σ−1/(1/σ2) = ∆′∆ led to the term relative precision factor for ∆ [31]. Note
that the partition of effects as being fixed and random (HA: genetic ef-
fect) can be compared to a sporadic model (H0: no genetic effect) y =
X1β1 +X2β2 + e where both β1 and β2 are fixed effects, the involvement of Σ
or more specifically Σ−1 as a “ridge factor” creates shrinkage in the random
effects solutions to the normal equations, i.e., “regression towards the mean”.

We will see an example from the GAW17 data below that a quantitative
trait Q1 is influenced by polygenic background and specific gene VEGFC
as captured by kinship or relationship matrix and IBD matrix, respectively.
This prompts the need to consider multiple random effects. We therefore
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pursue (8) further. As in [32], write y = Xβ + Z1a1 + . . . + Zkak + ε with
the usual assumption that y being N × 1 vector of observations, X an N × p
known matrix, not necessarily of full column rank, β a vector of fixed effects,
Zi a known N × ri matrix of rank ri, ai random effects with E(ai) = 0,
cov(ai) = σ2

i Iri , cov(ai, aj) = 0, i 6= j, cov(ai, ε) = 0, i, j = 1, . . . , k, ε an
N × 1 vector of errors with E(ε) = 0, cov(ε) = σ2IN . Then E(y) = Xβ and
cov(y) = Σ = σ2IN +

∑k
j=1 σ

2
jZjZ

′
j. This turns out to be critical to explore

the covariance structure involving more (k) parameters (σ2
1, . . . , σ

2
k) in form

Σ(σ2
1, . . . , σ

2
k) = Σ1(σ

2
1) + . . .+ Σk(σ

2
k) (9)

where Σi(σ
2
i ) has the form of σ2

iHi, i = 1 . . . , k with σ2
i being the unknown

parameter and Hi a (known) coefficient matrix. It will also hold when differ-
ent variance components such as multiple major genes of interest, gene-gene,
gene-environment interactions, common shared environment are to be mod-
eled. For significance test, Case 4 in [30] serves as a general guideline.

A closely related model is the so-called marginal or population-average
model whereby familial relationship can be specified for e, namely general-
ized estimating equations (GEE) [12, 33]. Given µi = E(y), Vi = V ar(y), it
has the form ∑

i

(
∂µi
∂β

)′
V −1
i (yi − µi) = 0 (10)

for which only link function and variance need to be specified. Parameter
estimates are consistent even when variance structure is misspecified, but the
ability to use (9) is an apparent advantage.

We now turn to the Cox model. First, the consideration of an unob-
served family specific random effect is often termed as frailty model, such
that families with a larger value of the frailty will experience the event at
earlier times and most “frail” individuals will fail early[34]. Now we allow
for correlated frailty and in analogy to model (3) and [22], the appropriate
model with random effect Ui becomes λi(t) = λ0(t) exp(Xiβ+Ui). Assuming
the parameters of interest are β and σ2 we have

PL(β, U) =
N∏
i=1

[
exp(Xiβ + Ui)∑

j∈R(ti) exp(Xjβ + Ui)

]δi
(11)

The so-called integrated log likelihood is derived as.

L =
∫
PL(β, U)L(U)dU (12)
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A more tractable solution is via a Laplace approximation for an approx-
imate marginal log likelihood that can be maximized by a penalized par-
tial likelihood (PPL) for parameters (β, σ2), PPL(β, U) = log(PL(β, U)) −
UTΣ−1U/2, followed by a profile likelihood function involving only σ2.

Furthermore, we can take advantage of the generic form of covariance
in other types of models as well. A straightforward yet remarkably useful
extension is the multivariate model. For instance, consider (8) with m phe-
notypes. Let y = (y11, . . . , y1N , . . . , ymN)T be a vector of m multivariate
phenotypes for N individuals. Let β a vector of dimension mp of the regres-
sion coefficients for the p covariates including a vector of 1’s corresponding
to the overall mean, X = Im

⊗
XN,p an mN ×mp known matrix of covariate

values. An analogy to (7,8) leads to the variance-covariance matrix of the m
phenotypes with dimension mN ×mN is

Σ = A
⊗

Π +B
⊗

R + C
⊗

I (13)

where R is the N ×N matrix of the coefficients of relationship, Π an N ×N
matrix of estimated proportion of alleles IBD, and A, B, C are oligogenic,
polygenic and residual variance-covariance matrices each with dimension m×
m.

2.3 Meta-analysis

One indispensable element in current GWASs is meta-analysis, typically in-
volving findings from both unrelated individuals in a population and those
from family data. While we have seen that mixed models are appropriate
for a variety of traits in family-based association studies, broadly models for
meta-analysis also fall into the same framework as described above. One can
imagine a meta-analysis involving individual participant data (IPD). A good
summary of approaches for IPD meta-analysis is available [35]:

In the two-step approach, the individual participant data are first analysed
in each separate study independently by using a statistical method appropri-
ate for the type of data being analysed; for example, a linear regression model
might be fitted for continuous responses such as blood pressure, or Cox regres-
sion might be applied for time to event data. (This step produces aggregate
data for each study including effect estimate and its standard error). These
data are then synthesised in the second step using a suitable model for meta-
analysis of aggregate data, such as one that weights studies by the inverse of
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the variance while assuming fixed or random effects across studies. In the
one-step approach, the individual participant data from all studies are mod-
elled simultaneously while accounting for the clustering of participants within
studies. This approach again requires a model specific to the type of data
being synthesised, alongside appropriate specification of the assumptions of
the meta-analysis (for example, of fixed or random effects across studies).

The two-step approach is the usual one used in various GWAS consortia
while a one-step approach for all studies in our context could involve unre-
lated population-based samples and family data in the meta-model as long as
the correlation structure is appropriately specified. The pracitcality of both
approaches has been illustrated in the literature [36, 37] but in view of the
complexity involving in such a framework, and the practical difficulty that a
researcher may not have access to individual data from all studies, for now
we refrain ourselves from such a consideration for now but remain focus on
family data as illustrated with both simulated and real data.

2.4 Related results and implementations

There have been concerns in the literature regarding large number of units
each with bounded sizes [38] and a large number of random effects [39]. In
our context large number of families each with bounded members, consistent
estimate of the random effect is difficult to obtain though fixed effects and
variance components will be consistent. However, Type I error rate and
power have been explored before [19, 22, 26, 40], so we will be more on
specific examples.

Instead of using purposely written programs, we chose to use R, for its
wide availability and many other features [41] and in particular procedures to
fit models described earlier are to a great extent available, including generic
procedures from nlme, lme4 and gee, among others, but package designed
for family data is pedigreemm with lmekin for linear mixed models available
from coxme. We will also compare them to SAS, due to its ability to deal
with large data, and great flexibility in model specification.

3 Examples

We consider two examples from GAWs 17 and 16, which involve simulated
and real data widely available and allow for a lot of experiments to be done.
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3.1 GAW17 Data

Data distributed by GAW17 were based on a collection of unrelated individ-
uals and their genotypes were generated from the 1000 Genomes Project5,
from which a sample of 697 individuals in 8 extended families and their
genotypes and phenotypes were available. A total of 202 founders in the
family data set were chosen at random from the set of unrelated individuals.
Replicates of the trait were generated 200 times but the simulated genotypes
remain constant over replicates. The traits made available were Q1, Q2, Q4,
and AFFECTED (coded 0=no 1=yes) with covariates AGE and SMOKE.
The variables describing family structures were ID, FA, MO, SEX (1=men,
2=women). Fully informative IBD information was available for 3205 genes.

We chose to examine traits Q1, Q2 and AFFECTED as representatives
of quantitative and qualitative traits. According to [42], vascular endothelial
growth factor (VEGF ) pathway was enriched and here vascular endothelial
growth factor C (VEGFC 6) was chosen as a causal variant associated with
Q1 but not Q2. Q1 also increased with age, and the fact that AFFECTED
is a function of Q1 offers the possibility to furnish a logistic regression model
and explore age at onset via a Cox model. For illustration, we used age
as surrogate for age onset. Being aware of the fact that this was only an
approximation, whenever multipe affected individuals within a sibship are
available, their average age was used. Causal variants and associate genes
provide information on power of association testing statistics while the non-
causal counterparts provide analogous results on Type I error rate.

The statistical significance was assessed according to log likelihood ratio
tests between models using relationship only versus using both relationship
and IBD information. The computation for this is relatively fast, results
for all 200 replicates took 1 hour 48 minutes on our 20-node Linux clusters
each with 16GB RAM and 4 CPUs using Sun grid engines. The nominal
significance levels are shown in Table 1, which reveal that the tests are both
close to the expected level under H0 and HA.

Gene-based analysis was also conducted for Q1 involving all 3205 genes
and the results are shown with selected candidates highlighted in Figure 1,
which agree with the simulated model in which the significant regions were
in VEGFC/VEGFA.

As one would be keen to see various parameter estimates in a real analy-

5See http://www.1000genomes.org/
6See http://en.wikipedia.org/wiki/Vascular_endothelial_growth_factor_C
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sis, we also provide results associated with replicate one. Q1 as based on re-
stricted maximum likelihood (REML) are shown in Table 2. The models with
relationship only and with both relationship and IBD information have -2
Res(tricted) Log likelihood being 1789.5 and 1775.2, respetively while Akaike
Information Criteria (AIC) being 1793.5 and 1781.2, respectively so that us-
ing IBD information improved fit for Q1 (smaller AIC). For AFFECTED the
results based on maximum pseudo-likelihood are shown in Table 3 and those
from Cox model in Table 4. Note that the improvement in terms of -2 Log
Pseudo-Likelihood from 3434.4 to 3445.7 was also substantial. To explore
the multivariate model (13) involving the polygenic effects for Q1, Q2 and
Q4, the six parameters (σ11, σ21, σ22, σ31, σ32, σ33) in the variance-covariance
matrix have been expressed according to (9). The appropriate matrices as-
sociated with all parameters are constructed a priori. These are then subject
to procedures such as PROC MIXED and lmekin. The joint model of Q1,
Q2, Q4 are shown in Table 5.

The implementations are provided in Supplementary information.
While code blocks shown there are appropriate for one instance, it is prefer-
able to use SAS ’s output delivery system (ODS) to save various results into
databases.

3.2 The Framingham Heart Study

The Framingham Heart Study is under the direction of National Heart, Lung,
and Blood Institute (NHLBI) which began in 1948 with the recruitment of
adults from the town of Framingham, Massachusetts. Data available for
GAW16 were 7130 individuals from the original cohort (373), the first gen-
eration cohort (2760) and the third generation cohort (3997) with sex, age,
height, weight, blood pressure, lipids, smoking and drinking. Data as out-
lined in [43] was used here, where 6848 had genotype data for at least one of
the four specified SNPs (rs1121980, rs9939609, rs17782313 and rs17700633).
Data for 96 individuals without any phenotype data but with genotype data
and an additional 227 individuals without being assigned a family ID were
excluded from analyses. Additionally, four individuals had no data on weight,
86 observations were measured at <18 years of age, and therefore were ex-
cluded. The 6,520 remaining individuals were part of 962 families, among
which 2073 individuals had completed four visits. Meanwhile, there were also
365 cases of diabetes with their ages of onset.

Kinship information was obtained from family structure and used for
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genotype-trait association. Computer program PLINK [44] with the –genome
option was also used to infer correlations (π̂) using whole genome data. A
total of 8485 SNPs on Affymetrix 500K chips were derived from a panel of
45620 informative autosomal SNPs used in our consortium analysis. This
led to estimates for 6520(6520− 1)/2 = 21251940 pairs of relationship. The
genetic distance according to |π − π̂| [45], i.e., sum(abs(EZ-PI HAT),
na.rm=TRUE), is 3421.724. Approximately half (10478474) had π̂ of 0.01
or more. Although there was a good agreement between kinship according
to the specified family structures and π̂, 11207 pairs of individuals deemed
to be unrelated had π̂ between 0.1-0.3 and 12 of which were greater than 0.3.

Both types of relationship matrices were used for the Cox model via
kinship and bdsmatrix.ibd functions in R. The frailty and polygenic models
had log likelihoods of -1788.53, -1791.93 with variance estimates 0.102 and
0.022, respectively. However, with inferred relationship the log likelihood
turned out to be -1762.69 and variance estimate 0.242. Similar model for BMI
at wave 1 was also fitted, a family specific random intercept model yielded log
likelihood of -19273.26 and variance 3.44, while a correlated random intercept
model gave log likelihood -19379.3 and variance 0.012 with comparable results
from inferred relationship though with a smaller residual error. The results
on diabetes might have suggested a substantial genetic effect while for BMI
the use of inferred relationship performed equally well with a model using
explicit family structures.

4 Discussion

The models we have considered extend counterparts for unrelated sample by
taking into account correlation within and heterogeneity between families.
To a large extent, we have presented an appreciation of models and imple-
mentations for related individuals using mixed models. At the meantime, we
have envisaged a whole range of analyses that can be put in the framework.
However, compared to [13] and especially [19], our development is more incre-
mental and helps to gain insight into more complicated models. As a key fea-
ture of the model specification, oligogenes, polygenes, common environment,
gene-environment interaction, and multivariate data are accommodated in a
coherent framework via appropriate covariance structure. The generic na-
ture has enabled a range of genetic association studies. Our interpretation
of the model also naturally extends the model for quantitative traits out-
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lined by [46] and [19]. It has been recognized that for longitudinal data some
commonly used covariance structures, such as compound symmetry, can be
expressed as “linear covariance of dimension k” [47, p258]. Although it could
be more involved, it may be possible in our context. Data as in consortium
meta-analysis analysis is also perceived in broader framework consisting of
both unrelated and related individuals.

It should be aware that mixed models are quite general and may well be
linked to other models. For instance, we noticed that model (10) is reminis-
cent of an approach proposed for generalized method of moments [48]. An
example as with its link with individual empirical Bayes estimates has been
provided by [49] and [50]. A reviewer has brought to our attention recent
work on nonparametric methods for longitudinal data [51] and the utility of
mixed models in controlling for bias of population stratification (e.g., [52]).
This paper has limited coverage of literature on longitudinal analysis of family
data, mainly owing to the fact that there is greater difficulty in implementa-
tion via general software package. However, this is expected to change. To
our knowledge, little work has been done on joint analysis of individual data
in the GWAS meta-analysis context. In view of the popularity of consortium
data analysis, it will be appealing to have the appropriate mechanism to
make it possible.

The models and their implementations are connected with whole genome
data in several ways. First, the transition from the variance components mod-
els in earlier literature becomes more explicit. More specifically, the models
described here are appropriate for GWAS where genetic variants coupled
with a high resolution map is available. In general, the variance components
associated with a major gene as in (7) is a function of the recombination rate
(r) [12], i.e., σ2

Mf(r, πij), where πij represents identity-by-descent sharing be-
tween a pair of individuals i, j for the marker locus; with dense marker, we
can assume that r = 0 which is also true with (9). Second, as in the Framing-
ham data there is a further benefit with dense genetic markers such that they
can be used to infer family structure [53] or (global) IBD information [54].
The availability of the deep sequencing data and a long list of established
genes are likely to give greater weight on use of family data [55]. It is also
desirable that cryptic relatedness in population-based sample can be appro-
priately taken into account in association analysis. In our own EPIC-Norolk
GWAS, samples with cryptic relatedness have been excluded at the quality
control stage [56]. It is interesting to note that, coxme was developed for
handling large pedigrees involving sparse matrices, the availability of whole
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genome data will alter the scenario slightly but nevertheless remain in the
same framework. Third, more work is required to shorten computing time.
In the literature, it has been proposed to absorb the relationship in the model
for quantitative trait by multiplying inverse of the kinship matrix followed
by a linear regression, or using residuals from a phenotype-covariate only re-
gression as outcome in a model including SNPs as in GenABEL. In principle
one can extend the idea to multivariate or longitudinal models where the
residuals are obtained only once for GWAS or incorporating regional infor-
mation before turning to SNP-specific analysis. There are also alternative
approaches such as retrospective methods found in Merlin. With its greater
requirement in computation the “measured genotype” approach here remains
intuitive especially for gene-environment characterization. To this point, as-
sociate projects such as BORDICEA7 and BayesMendel8 have contributed
to the success of work on R described here.

A reviewer has expressed interest regarding the Type I error linking to
results shown in Table 1. We believe that data as distributed by GAW17 as
they were (200 replicates) are not ideal for assessing Type I error and pos-
sibly requires a bootstrap procedure. In general, from our experience (and
personal communications with Profs Douglas Bates and Terry Therneau),
this is a difficult issue and possibly problem specific. In fact, in the recent
implementation of GLMM in lme4, the associate p values for fixed effects
are not shown which nevertheless may leave users with temptation to em-
ploy normal approximation. Although we have not conducted extensive nu-
merical experiments, results from GAW17 and the Framingham Study have
indicated good performance of these models, and that of the inferred re-
lationship based on whole genome data is impressive. Since only directly
genotyped Affy500K SNPs were used, the addition of imputed genotypes,
say based on the HapMap, should help to improve the inference. Its use in
the usual genomewide association analysis should be considered.

Our attention lies on the implementation by taking advantages of the
available implementation in general statistical computing environment. The
clarification of the implementation in these should facilitate practical analysis
of family data. Although these models are conceptually simple, availability
of their implementation vary, notably the ability to allow for both oligogenes
and polygenes in a GLMM framework. For R, these are at least possible with

7See http://www.srl.cam.ac.uk/genepi/boadicea/boadicea_home.html
8See http://bcb.dfci.harvard.edu/BayesMendel/
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nlme, lme4 and additionally coxme. At the moment, application of pack-
ages in R are often restricted with lmekin in coxme offering outcomes only
on continuous outcome but for pedigreemm it is unable to handle complex
covariance structure. It is desirable that a function called nlmekin can be
developed as with pedigreemm expanded to incorporate additive covariance
structures. For SAS, MIXED, GLIMMIX and NLMIXED together provide a
rich source of practical modeling functionality though the Cox model coun-
terpart is not available. The tackling of various issues has led to efficient
algorithm [25]. When the interest is on correlation between multiple traits,
the use of nlme for multivariate longitudinal data in unrelated individuals
has been described [57]. In general, this could be complicate with longitudi-
nal familial data without [58] or with [59] consideration of relationship. In
study of obesity-related traits, FTO has been shown to be strongly associ-
ated with BMI and supported by cross-sectional data as in [14], longitudinal
data as in [43] and data across life span as in [60]. Our previous attempt [43]
was based on a three-level model and it would be of interest to use kinship
information as well.

While the framework we have outlined is comprehensive, we feel that our
“proof of concepts” here awaits for extensive testing. It is also desirable that
the current implementation can be optimized in computing time. A lot of
work has been done for quantitative genetics in plants and aminals. Our
experience indicated that the running time with SAS was longer time than
R. However, in an analysis of longitudinal lung function data in the EPIC-
Norfolk study, we have shown that although an individual analysis could be
slow it is possible to perform an analysis for GWAS using SAS and Linux
clusters so that ∼2.5M SNPs would finish within 14 hours when running
each chromosome on a separate node. It is likely that was benefited from
SAS caching frequently-used instructions. Greater proportion of coding in
C/C++ should also be helpful. Given the utility of the popular environments
can be shown, their take-up in genomewide association studies will be quick
and it is very much in line with efforts in other disciplines where large volume
of data is involved.
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Supplementary information

Our focus in this section will be in R and compared to SAS. Some comments
on Bayesian methods will be given at later part of this section.

R implementation

The kinship package was used for kinship calculation, linear mixed model
as with mixed Cox models. The package was originally implemented in S-
PLUS and ported to R as described in [61]. Some recent initatives have been
made to improve the facilities for handling sparse matrices, various tools
for family data including pedigree drawing as with kinship calculation, and
mixed effects Cox model, so the original kinship package was partitioned
into three separate packages called bdsmatrix, kinship2 and coxme. The
pedigreemm package [21] is appropriate for modeling polygenes within the
GLMM framework.

Kinship calculation

A function makefamid from kinship will generate a “pedigree” type, which
can be used by function makekinship to obtain kinship matrices from different
families,

library(kinship)

pid <- with(fam, makefamid(ID, FA, MO))

kmat <- with(fam, makekinship(pid, ID, FA, MO))

Note that with GWAS this only needs to be done once and does not have
a big overhead. Interestingly, the models for a collection of monozygotic
(MZ) and dizygotic (DZ) twins can be treated as a special case. A model
using an exchangeable correlation, say, will not be so desirable compared to
those using the kinship information11. Consider a study of nMZ MZ and
nDZ DZ twins, we can order that data such that MZ twins precede their DZ
counterpart, then function bdsmatrix is called to generate the kinship matrix
to be used by glm for a sporadic model or lmekin for a linear mixed model.

11For twin data, to account for the relationship between twin pairs one can pragmatically
specify the correlation structure. In one study of physical activity, we order twin pairs by
zygosity such that MZ precede DZ twins in the data, we can then subject the data for
analysis with following code.
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idn <- 1:(2*(nMZ+nDZ))

kmat <- bdsmatrix(rep(2,nMZ+nDZ),c(rep(0.5,3*nMZ),

rep(c(0.5,0.25,0.5),nDZ)),

dimnames=list(idn,idn))

glmfit <- glm(paee ~ walkability + age + weight + sex)

summary(glmfit)

kfit <- lmekin(paee ~ walkability + age + weight + sex,

random = ~1|id, varlist=list(kmat))

kfit

There are a number of other packages available, e.g., gap and identity.

Linear mixed model

library(kinship)

kkin <- lmekin(Q1 ~ SEX + AGE + SMOKE,

data=pg, random = ~1|ID, varlist=list(kmat))

kibd <- lmekin(Q1 ~ SEX + AGE + SMOKE,

data=pg, random = ~1|ID,

varlist=list(kmat,ibdmat))

Generalized linear mixed model

library(pedigreemm)

bt <- pedigreemm(AFFECTED ~ SEX + AGE + SMOKE + (1|ID),

data=pg, family="binomial"(link="logit"),

pedigree=list(ID=ped))

Multivariate model

The package multic [46] has facility for multivariate analysis, however, it was
bound to particular environments. In principle, this is a computing problem
that can be fixed.

Marginal models

A notable implementation is R gee package.
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library(gee)

m1 <- gee(Q1 ~ SEX + AGE + SMOKE, id=pid,

data=pg, corstr="exchangeable")

summary(m1)

To ensure maximum compatibility with the GLMM fit, the scale param-
eter is chosen to be fixed at the default value of 1. The structure “ex-
changeable” assumes equal correlations between relatives in a pedigree but
in principle this could be modified to use kinship matrix as in SAS below.

Mixed Cox models

This is a Cox model with correlated frailty.

library(kinship)

kcox <- coxme(Surv(age, AFFECTED) ~ SEX + SMOKE,

data=pg, random = ~1|ID, varlist=list(kmat))

More information is available from the package vignette.

kinship2 and coxme

As of 14 March 2012, the current version of kinship at CRAN will be archived.
This has been due to a recent development which involves splitting the pack-
age into three separate ones, namesly bdsmatrix, kinship2, and coxme. One
only expects a slight change from a user’s perspective, e.g., the way to specify
random effects associated with coxme. Although this also involves lmekin,
here only examples with respect to Cox model are given. For the Framing-
ham data contained in nf, the diabetes status and age onset were available
and the modeling syntax is as follows,

library(kinship2)

attach(nf)

f <- makefamid(shareid, fshare, mshare)

k <- makekinship(f, shareid, fshare, mshare)

detach(nf)

library(coxme)

print("Cox model with random intercept")

f1 <- coxme(Surv(agediab, diabetes) ~ sex + (1|pedno), nf)
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f1

print("Cox model with random intercept and additive variance")

k2 <- 2*as.matrix(k)

f2 <- coxme(Surv(agediab, diabetes) ~ sex + (1|shareid), nf,

varlist=coxmeMlist(k2, rescale=FALSE))

f2

The standard Cox model provides a baseline to compare. Note that kinship2
depends on Matrix so k2 is created for coxme.

Suppose we intend to read output k.dat from PLINK, we can use the
following code,

k <- read.table("k.dat",header=TRUE)

library(bdsmatrix)

attach(k)

ID <- unique(c(IID1,IID2))

t1 <- cbind(IID1,IID2,PI_HAT)

t2 <- cbind(IID1=ID,IID2=ID,PI_HAT=0.5)

trio <- rbind(t1,t2)

k2 <- bdsmatrix.ibd(trio)

detach(k)

save(k,k2,file="k.RData")

Note that we add the diagonal elements in the kinship matrix, which can be
loaded with load(“k.RData”).

regress and MASS

After submission of the paper, we learned about the work in a similar but
alternative context [62]. It turned out that the associated package regress
yielded comparable results to lmekin from kinship (data not shown).

We have also become aware of the possibility to use glmmPQL available
from MASS [63] and it appears straightforward to use the corSymm function
in nlme to construct a correlation for data on twins and affected sib pairs
as input for the correlation option, but for data containing general pedigrees
this is more involved and we had limited experience of success.
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SAS implementation

SAS has used G and R to indicate the variance-covariance matrices associ-
ated with random and fixed effects. The procedures of interest in SAS are
MIXED, GLIMMIX, NLMIXED. GLIMMIX is an extension to both PROC
GENMOD and PROC MIXED.

When individuals in a pedigree is ordered appropriately, the specification
should be as follows,

proc inbreed data=families covar outcov=kmat;

var id fa mo;

run;

The following block is for the polygenic model.

title kinship only;

proc mixed data=pheno covtest asycov noclprint;

class id;

model q1=sex age smoke SNP / noint solution covb;

random id / type=lin(1) ldata=kmat solution;

run;

proc glimmix data=pheno asycov method=mmpl;

class id;

model affected(event=’1’)=sex age smoke SNP

/ dist=binary link=logit solution covb;

random id / type=lin(1) ldata=kmat solution;

random _residual_;

run;

By default, PROC MIXED employs REML method. For PROC GLIM-
MIX, maximum or restricted maximum likelihood approach was applied to
a pseudo-likelihood (PL) in the sense that a linearization is applied, leading
to abbreviations such as M PL and R PL, where can be subject-specific
(S) expansion where linearization is carried out about the current estimate
or β and U , or a marginal (M) expansion where the linearization is about
a current estimate of β and E(U) = 0. If method=QUAD is specified, an
adaptive Gauss-Hermite quadrature is used.

The following block is for both oligogenic and polygenic effects
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title kinship and ibd;

proc mixed data=pheno covtest asycov noprofile;

class id;

model q1=sex age smoke / noint solution covb;

random id / type=lin(2) ldata=kibd solution;

run;

proc glimmix data=pheno asycov method=mmpl;

class id;

model affected(event=’1’)=sex age smoke

/ dist=binary link=logit solution covb;

random id / type=lin(2) ldata=kibd solution;

random _residual_;

run;

Therefore the method of estimation here is maximum marginal pseudo-likelihood.
As can be seen, the second part has extended those available from R and the
statement “random residual ” also allows for overdispersion.

For Cox model, one can take advantage of the PHREG procedure with
RANDOM statement to specify a shared frailty model which can be com-
pared with a model using ID statement to identify clusters.

Finally, one can specify the relationship as R part of the variance-covariance
matrix as follows,

proc mixed data=pheno sandwich;

class id;

model q1=sex age smoke / noint;

repeated / type=lin(1) ldata=kmat sub=pid;

run;

Where the PROC statement specifies the data set to be analyzed using a
sandwich estimator, MODEL the statistical model, REPEATED the R ma-
trix incorporating kinship information.
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Multivariate implementations

Simulation and estimation for a tri-variate normal data

We simulated 500 samples under a tri-variate normal N(µ,Σ) with

µ =

 1
2
3

 and Σ =

 10 1 2
1 20 3
2 3 50


The simulation and estimation are furnished as follows,

library(regress)

library("MASS")

set.seed(12345)

n <- 500

m <- c(1,2,3)

S <- matrix(c(10,1,2, 1,20,3, 2,3,50),3,3)

Y <- mvrnorm(n,m,S)

y <- as.vector(t(Y))

c <- kronecker(rep(1,n),diag(1,3))

V1 <- matrix(c(1,0,0, 0,0,0, 0,0,0),3,3,byrow=TRUE)

V2 <- matrix(c(0,1,0, 1,0,0, 0,0,0),3,3,byrow=TRUE)

V3 <- matrix(c(0,0,0, 0,1,0, 0,0,0),3,3,byrow=TRUE)

V4 <- matrix(c(0,0,1, 0,0,0, 1,0,0),3,3,byrow=TRUE)

V5 <- matrix(c(0,0,0, 0,0,1, 0,1,0),3,3,byrow=TRUE)

V6 <- matrix(c(0,0,0, 0,0,0, 0,0,1),3,3,byrow=TRUE)

id <- as.vector(t(cbind(1:n,1:n,1:n)))

s1 <- kronecker(diag(1,n),V1)

s2 <- kronecker(diag(1,n),V2)

s3 <- kronecker(diag(1,n),V3)

s4 <- kronecker(diag(1,n),V4)

s5 <- kronecker(diag(1,n),V5)

s6 <- kronecker(diag(1,n),V6)

results <- regress(y~c-1,~s1+s2+s3+s4+s5+s6,pos=c(1,0,1,0,0,1),

identity=FALSE,start=c(10,1,20,1,1,30))

apply(Y,2,mean)

cov(Y)

which produces results as follows,
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Likelihood kernel: K = c1+c2+c3

Maximized log likelihood with kernel K is -3041.732

Linear Coefficients:

Estimate Std. Error

c1 0.891 0.144

c2 2.026 0.201

c3 3.592 0.313

Variance Coefficients:

Estimate Std. Error

s1 10.313 0.653

s2 1.313 0.649

s3 20.241 1.281

s4 3.476 1.017

s5 2.881 1.414

s6 48.863 3.093

> apply(Y,2,mean)

[1] 0.8908874 2.0262134 3.5922123

> cov(Y)

[,1] [,2] [,3]

[1,] 10.312879 1.313217 3.475876

[2,] 1.313217 20.240644 2.881214

[3,] 3.475876 2.881214 48.863036

Through package regress we obtained

X̂ =

 0.89
2.03
3.59

 and S =

 10.31 1.31 3.48
1.31 20.24 2.88
3.48 2.88 48.86


agreeing with the simulated data. We now turn to the GAW17 data using a
multivariate model for Q1, Q2, Q4, with a bit of simplication over covariance
specification,

library(foreign)

pheno <- read.dta("pheno2.dta")
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kid <- read.csv("kmat.csv")

k <- as.matrix(kid[,-1])

library(regress)

library("MASS")

n <- 697

v1 <- v2 <- v3 <- v4 <- v5 <- v6 <- matrix(0,3,3)

v1[1,1] <- 1

v2[1,2] <- v2[2,1] <- 1

v3[2,2] <- 1

v4[1,3] <- v4[3,1] <- 1

v5[2,3] <- v5[3,2] <- 1

v6[3,3] <- 1

s1 <- kronecker(v1,k)

s2 <- kronecker(v2,k)

s3 <- kronecker(v3,k)

s4 <- kronecker(v4,k)

s5 <- kronecker(v5,k)

s6 <- kronecker(v6,k)

c <- kronecker(rep(1,n),diag(1,3))

id <- as.vector(t(cbind(1:n,1:n,1:n)))

results <- regress(q~-1+c+sex+age+smoke,~s1+s2+s3+s4+s5+s6,

identity=FALSE,pos=c(1,0,1,0,0,1),

start=c(5.546, 2.999, 3.940, -1.260, -0.780, 0.680),

data=pheno)

results

The results are given as follows,

Likelihood kernel: K = c1+c2+c3+sex+age+smoke

Maximized log likelihood with kernel K is -1393.867

Linear Coefficients:

Estimate Std. Error

c1 0.565 0.108

c2 0.531 0.109

c3 0.526 0.109
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sex -0.005 0.043

age -0.013 0.001

smoke -0.019 0.051

Variance Coefficients:

Estimate Std. Error

s1 4.219 0.227

s2 -0.103 0.166

s3 4.542 0.244

s4 0.601 0.178

s5 -0.108 0.183

s6 5.115 0.275

SAS implementation

We first revisit the simulated data generated above. Assuming the Y and
indicator c are stored in dataset mv while the coefficient matrices are stored
in mv ldata, then the appropriate syntax in SAS is as follows,

proc mixed data=mv covtest asycov noclprint;

class id c;

model q=c / noint solution;

random c*id / type=lin(6) ldata=mv_ldata;

run;

Although SAS complains about Convergence criteria met but final hessian
is not positive definite, it turns out that the estimats are fairely close.

Covariance Parameter Estimates

Standard Z

Cov Parm Estimate Error Value Pr Z

LIN(1) 9.3328 0.6529 14.30 <.0001

LIN(2) 1.3133 0.6494 2.02 0.0432

LIN(3) 19.2612 1.2814 15.03 <.0001

LIN(4) 3.4760 1.0169 3.42 0.0006

LIN(5) 2.8813 1.4138 2.04 0.0415
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LIN(6) 47.8845 3.0936 15.48 <.0001

Residual 0.9797 0 . .

Asymptotic Covariance Matrix of Estimates

Cov Parm CovP1 CovP2 CovP3 CovP4 CovP5 CovP6

LIN(1) 0.4262 0.05428 0.006913 0.1437 0.01830 0.04843

LIN(2) 0.05428 0.4218 0.1065 0.06870 0.1486 0.04015

LIN(3) 0.006913 0.1065 1.6421 0.01517 0.2338 0.03328

LIN(4) 0.1437 0.06870 0.01517 1.0341 0.1487 0.6808

LIN(5) 0.01830 0.1486 0.2338 0.1487 1.9988 0.5643

LIN(6) 0.04843 0.04015 0.03328 0.6808 0.5643 9.5704

-2 Res Log Likelihood 8853.4

AIC (smaller is better) 8867.4

Solution for Fixed Effects

Standard

Effect c Estimate Error DF t Value Pr > |t|

c 1 0.8909 0.1436 1497 6.20 <.0001

c 2 2.0262 0.2012 1497 10.07 <.0001

c 3 3.5922 0.3126 1497 11.49 <.0001

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

c 3 1497 76.12 <.0001

We now return to the GAW17 data. With the same spcification of Q1,
Q2, and Q4 in a single outcome, along with a variable c corresponding to
particular traits, the GLMMIX counterpart is as follows,
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title kinship and multivariate;

proc mixed data=pheno2 covtest asycov noclprint;

class id c;

model q=c sex age smoke / noint solution covb;

random c*id / type=lin(6) ldata=ldata solution;

run;

Note that in addition to a comparable estimate to the R implementation, the
REPEATED /group=c statement also adds trait-specific residual variances.
Furthermore, ldata contains the coefficient matrix generated from kinship
matrix kmat via the following code,

proc iml;

use kmat;

read all var _num_ into kmat;

k=0;

do i=1 to 3;

do j=1 to i;

j3=j(3,3,0);

j3[i,j]=1;

j3[j,i]=1;

v=j3@kmat;

k=k+1;

vp=v||j(nrow(v),1,k);

if k=1 then vps=vp;

else vps=vps//vp;

end;

end;

create vps from vps;

append from vps;

close vps;

quit;

libname x ’.’;

data x.ldata;

set vps (rename=(col2092=parm));

by parm;

if first.parm then row=1;

else row+1;

run;
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By default variance components can have lower boundary constraint of 0, in
cases this is not so one can use the PARMS statement, e.g., for the multi-
variate example as

parms / lowerb=1e-4,.,1e-4,.,.,1e-4,1e-4,1e-4,1e-4;

which informs the procedure to use default values (.) as lower boundaries for
the the covariances while 0.0001 for the variances.

BUGS12

The BUGS (Bayesian inference Using Gibbs Sampling) project is concerned
with flexible software for the Bayesian analysis of complex statistical models
using Markov chain Monte Carlo (MCMC) methods. Initiatives have been
made to make it available to Windows and other platforms and link with the
R project.

Analysis of family data has been described but we could not access the
source code associated with [26]. According to [25], the models we have de-
scribed can be straightforwardly implemented in software such as WinBUGS
but the implementation still requires founders precede their offsprings though
it is not necessary to do so with R in general and SAS for the examples used
here. It remains to explore the possibility to combine ideas in those imple-
mentations. However, analysis via WINBUGS is expected to be slower.

12See http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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Table 1: Nominal significance according to VEGFC

Q1 Q2 AFFECTED
Significance level Power Type I error Power

.05 .989 .060 .880

.01 .907 .016 .730
.001 .665 0 .555

.0001 .412 0 .420
.00001 .225 0 .305

.000001 .104 0 .200
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Table 2: Q1 and VEGFC under a linear model

Model/parameter Estimate SE z/t† -2 Res log likelihood AIC
kinship 1789.5 1793.5
σ2
P 0.5488 0.08262 6.64

SEX -0.2379 0.04614 -5.16
AGE 0.01014 0.001345 7.54
SMOKE 0.36894 0.07280 5.07

kinship+IBD 1775.2 1781.2
σ2
P 0.4157 0.08713 4.77
σ2
M 0.1076 0.03846 2.80

SEX -0.2488 0.04542 -5.48
AGE 0.01044 0.001334 7.82
SMOKE 0.3821 0.07181 5.32

† z is for variance components while t for fixed effects.

Table 3: AFFECTED and VEGFC under a logistic model

Model/parameter Estimate SE t -2 Log pseudo-likelihood
kinship 3434.4
σ2
P 1.3170 0.4376

SEX -0.00822 0.2042 -0.04
AGE 0.07181 0.006047 11.87
SMOKE 0.9098 0.2285 3.98

kinship+IBD 3445.7
σ2
P 0.6918 0.5989
σ2
M 0.4868 0.3698

SEX 0.006923 0.2048 0.03
AGE 0.07211 0.006114 11.79
SMOKE 0.9429 0.2290 4.12
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Table 4: AFFECTED and VEGFC under a Cox model

Model/parameter Estimate SE z Integrated/Penalized likelihoods†

kinship -998.8/-980.6
σ2
P 0.2073

SEX 0.05267 0.1541 0.34
SMOKE 0.5000 0.1622 3.08

kinship+IBD -996.1/-967.3
σ2
P 0.002690
σ2
M 0.3615

SEX 0.07146 0.1603 0.43
SMOKE 0.5560 0.1696 3.28

† The log likelihood under the null is -1003.9

Table 5: Q1, Q2 and Q4 under a multivariate polygenic model

Estimate SE Log likelihood
Linear Coefficients -1393.867
c1 0.565 0.108
c2 0.531 0.109
c3 0.526 0.109
sex -0.005 0.043
age -0.013 0.001
smoke -0.019 0.051

Variance Coefficients
σ11 4.219 0.227
σ12 -0.103 0.166
σ22 4.542 0.244
σ31 0.601 0.178
σ32 -0.108 0.183
σ33 5.115 0.275
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Figure 1: Manhattan plot of Q1 and IBD information where the true loci are
highlighted
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