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Abstract

We considered Bayesian estimation of polygenic effects, in particular heritability in
relation to a class of linear mixed models implemented in R (R Core Team 2018). Our ap-
proach is applicable to both family-based and population-based studies in human genetics
with which a genetic relationship matrix can be derived either from family structure or
genome-wide data. Using a simulated and a real data, we demonstrate our implementation
of the models in the generic statistical software systems JAGS (Plummer 2017) and Stan
(Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, and Rid-
dell 2017) as well as several R packages. In doing so, we have not only provided facilities
in R linking standalone programs such as GCTA (Yang, Lee, Goddard, and Visscher 2011)
and other packages in R but also addressed some technical issues in the analysis. Our
experience with a host of general and special software systems will facilitate investigation
into more complex models for both human and nonhuman genetics.

Keywords: Bayesian linear mixed models, heritability, polygenic effects, relationship matrix,
family-based design, genomewide association study.

1. Introduction
The genetic basis of quantitative phenotypes has been a long-standing research problem as-
sociated with a large and growing literature, and one of the earliest was by Fisher (1918) on
additive effects of genetic variants (the polygenic effects). In human genetics it is common to
estimate heritability, the proportion of polygenic variance to the total phenotypic variance,
through twin and family studies. For twin studies, polygenic effects are embedded into corre-
lations between monzygotic and dizygotic twin pairs using the assumption that monozygotic
twins share all the genetic materials but dizygotic twins only half. For family studies, the
polygenic component is coupled with a relationship matrix in a mixed model with covariates
as fixed effects, e.g., Morton and MacLean (1974) and Lange (2002). The models differ from
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those usually seen in general statistics as the polygenic effects are represented by a random
variable that is correlated among all relatives due to genes shared identity-by-descent. The
estimation can be inaccurate due especially to shared environment in both twin and family
studies.
More recently, a large quantity of single nucleotide polymorphisms (SNPs), single base-pair
variants of DNA, available from population-based samples has offered renewed interest in the
problem. This is because the data allows for a genomic relationship matrix (GRM) to be built
as part of a genomewide association study (GWAS) for identification and characterization of
the DNA variants and phenotype (our outcome of interest) association. Yang, Benyamin,
McEvoy, Gordon, Henders, Nyholt, Madden, Heath, Martin, Montgomery, Goddard, and
Visscher (2010) showed that a GRM can be used in the mixed model very much in the same
way as in models for families where the relationship matrix is built on familial relationships.
Consequently, the ubiquitous availability of DNA also makes the models appropriate for any
samples with typed DNA polymorphisms. The approach is applicable to a wide variety of
traits including continuous, discrete and time-to-event outcomes (Zhao and Luan 2012). The
estimation of heritability (h2), the proportion of total additive genetic variance as a proportion
of total phenotypic variance, is fundamentally important since it largely quantifies the scope
of a GWAS in gene discoveries and characterizations.
Bayesian methods are attractive since generic software systems are available to facilitate the
model-building, and they also help to address the issue concerning the uncertainty in pa-
rameter estimation. Moreover, they give credible intervals with highest probability density
(HPD) as opposed to frequentist interval estimates, often derived under simplifying assump-
tions. Markov chain Monte Carlo (MCMC) serves as a practical tool for Bayesian inference
with a full characterization of the posterior distribution of the variance components as well
as heritability. For this reason, Bayesian methods have been widely used in plant and animal
science literature for a broad range of traits, e.g., Yi and Xu (2000); Varona, Vidal, Quin-
tanilla, Gil, Sanchez, Folch, Hortos, Rius, Amills, and Noguera (2005). These applications
and the software employed almost exclusively use family structure, given that the inverse of
the relationship matrix is easily calculated, as was also the case with work on humans, e.g.,
Burton, Scurrah, Tobin, and Palmer (2005). Exceptions regarding software include package
BLR (Perez, de Los Campos, Crossa, and Gianola 2010; de los Campos, Perez, Vazquez, and
Crossa 2013) in R (R Core Team 2018) which can accommodate GRM but the analysis often
has to be stopped due to a nonpositive definite GRM. It is not obvious how these issues can
be addressed.
In our own analysis, we have encountered various issues. Our attempts to tackle these prob-
lems have led to some useful results, which we believe will facilitate similar analyses by other
colleagues. Via a simulated data and a real data, we implemented the models using JAGS
(just another Gibbs sampler; Plummer 2017), Stan (sampling through adaptive neighbor-
hoods; Stan Development Team 2016c; Carpenter et al. 2017) and in the case of a large sample
package BLR. We wrote utilities in R to read or write a GRM as generated from software
GCTA (Yang et al. 2011) to be used with these software packages, which contain functions to
calculate heritability and its standard error when polygenic and residual variance/standard
errors are given. We further adapted the R package MCMCglmm (Hadfield 2010) to enable
comparison between family-based or genotype-based relationship matrices. These functions
are available from the R package gap (Zhao 2017, 2007) with further information. We also
gave expressions for perturbing the covariance matrix when GRM is considered nonpositive
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definite. We believe our work will be of interest in human genetics as well as animal and plant
genetics. Below we will briefly describe the polygenic model, a simulated data as a benchmark
and an application. We then conclude with a summary, which includes generic discussions
on non-genetic effects, missing outcomes, efficient implementation, frequentist and Bayesian
estimates of heritability for the GCTA documentation example.

2. Statistical models
We start with an outline of the linear mixed model, showing how total additive genetic effects
can be framed with respect to a relationship matrix. We then consider specification of the
Bayesian linear mixed model.

2.1. Linear mixed model

To motivate we consider a study of body mass index (BMI, body weight/height (kg/m2)) in
relation to sex (0 = Man, 1 = Woman) and age (in years). A linear model (LM) of BMI on
sex and age is as follows,

BMI = b0 + b1 sex + b2 age + e, (1)

where b0 is an intercept, b1 and b2 are the regression coefficients for sex and age, indicating
a unit change in BMI attributable to being a woman than man and per-year increase in age,
respectively. e is a residual term indicating effects on BMI other than sex and age. As will
soon become clear, there is a need to have extra terms which are random variables, leading to
a linear mixed model (LMM). More generally, let y be a continuous variable and our outcome
of interest, X covariates, u random effects. A LMM has the following form,

y = Xβ + Zu+ e, (2)

where
y – an N × 1 vector of observations;
X – an N × p matrix of known covariates;
β – a p× 1 vector of unknown regression coefficients;
Z – a known N × q matrix of variables;
u – a q × 1 vector of unknown random effects;
e – an N × 1 vector of (unobservable random) errors.
We assume that u ∼ N(0, D) and e ∼ N(0, E), so that y ∼ N(Xβ, V ) with V = E +ZDZ>.
Statistical inference of this model, based on the frequentist approach, can be done with
maximum likelihood (ML) or restricted maximum likelihood (REML) estimation. Procedures
are widely available (see Sorensen and Gianola 2002, for further details).

2.2. Linear mixed model with polygenic effects

We assume that our trait of interest, y, is a function of m causal variants each with effect ui,
ui ∼ N(0, σ2

u), i = 1, . . . ,m, treated as random effect, σ2
u a polygenic variance. These variants

are DNA polymorphisms at particular positions across the genome. At locus i, we assume the
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two causal alleles are q and Q with frequency 1− fi, fi, and forms genotypes qq, qQ and QQ,
respectively with additive effects 0, 1, and 2. The genotypic effects are associated following
a Binomial distribution, Bin(2, fi), with mean 2fi and variance 2(1 − fi)fi, respectively,
leading to normalized additive effects (zi) being −2fi/

√
2(1− fi)fi, (1 − 2fi)/

√
2(1− fi)fi

and (2−2fi)/
√

2(1− fi)fi. The simplest form of a polygenic model uses a linear combination
of effects from all causal variants, i.e., g =

∑m
i=1 ziui where zi can be seen as a function of the

frequency of allele with effect acting as a scaling factor such that E(zi) = 0 and VAR(zi) = 1.
In matrix notation g = Zu, we have g ∼ N(0, σ2

uZZ
>) and σ2

g = mσ2
u is the variance of total

additive effects (“polygenic effects”). From this VAR(y) = σ2
uZZ

>+σ2I = σ2
gZZ

>/m+σ2I =
σ2
gA+σ2I, where A = ZZ>/m amounts to a relationship matrix and is indeed called a GRM

at the causal loci, σ2 is the residual variance, and I an identity matrix. Heritability is
defined as the proportion of phenotypic variance explained by the polygenic effects, namely,
h2 = σ2

g/(σ2
g + σ2).

The matrix A can be represented with genomewide data containing a large number (M) of
SNPs analogous to causal variants, i.e., G = WW>/M where wij = (xij − 2pi)/

√
2(1− pi)pi,

j = 1, 2, 3 represents the genotypic effects of SNP i and pi is the allele frequency, while
xij = 0, 1, 2 for SNP i having alleles a1, a2, and genotypes a1a1, a1a2, a2a2, respectively.
A series of refinements of the G matrix has been suggested by Yang et al. (2010). The
GCTA software can generate a compressed (.grm.gz) or binary (.grm.bin) form of GRMs
from genomewide SNPs and provide REML estimates for the polygenic model.
In summary, our model is similar to (2) in that D = σ2

gG and E = σ2I, where G is a GRM,

y = Xβ + g + e. (3)

VAR(y) = σ2
gG+ σ2I with g being “polygenic effects” and G an N ×N GRM.

For data on relatives, the additive genetic relationship matrix A can also be derived from a
given family structure which is twice the kinship matrix (Lange 2002) whose entries represent
probabilities of genes shared identity-by-descent among pairs of relatives. The matrix can be
generated by a number of R packages such as kinship2 (Therneau and Sinnwell 2015) which
are available from the Comprehensive R Archive Network (CRAN).

2.3. Bayesian linear mixed model with polygenic effects

A Bayesian linear mixed model (BLMM) with polygenic effects follows the set-up above,
whose sampling model is as follows,

y|β, u, σ2 ∼ N(Xβ + Zu, σ2I),
β|σ2

β ∼ N(0, σ2
βB),

u|σ2 ∼ N(0, σ2A), (4)

where B is a known, nonsingular matrix and σ2
β is a hyperparameter. Full specification

of the model is furnished with appropriate distributions for the variance components, e.g.,
Section 6.3 of Sorensen and Gianola (2002). For the polygenic model (3) in this paper, we
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have the likelihood and assumed prior specifications as follows:

y ∼ N(µ, σ2I)
µ = Xβ + g

βj ∼ N(0, 10002), j = 1, . . . , p,
g ∼ N(0, σ2

gG)
σ2
g ∼ InvGamma(s1, s2)
σ2 ∼ InvGamma(s1, s2) (5)

where s1 and s2 are chosen to provide noninformative priors, and the matrix B is diagonal.
Other priors for the variance components such as uniform are possible, as in Section 4.2 below,
see also Waldmann (2009) and Gelman (2006).

2.4. Handling of the G matrix

Simulation of the polygenic effects in Section 2.3 involves the multivariate Normal distribution,
which could be very time-consuming when N gets large. A speedup can be achieved by
obtaining the precision matrix as input to software described below. More often, a Cholesky
decomposition can be applied. For g ∼ N(0, σ2

gG), Let G = CC> and zi ∼ N(0, 1), i =
1, . . . , N , then gi = σgCzi ∼ N(0, σ2

gG). As expression (5) is amenable to a few software
environments for MCMC sampling, these are exposed in Section 3.2 below.

3. Benchmark
Data from Meyer (1989) as in Tempelman and Rosa (2004) is used as our benchmark.
The pedigrees for each of these 282 animals derive from an additional 24 base population
(Generation 0) animals that do not have records of their own, nevertheless are of inter-
est with respect to the inference on their own additive genetic values. Furthermore, it
is presumed that these original 24 base animals are not related to each other. There-
fore, the row dimension of u is 306 (282 + 24). To facilitate discussions the data is made
available in package gap available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=gap.

3.1. Frequentist approach

Tempelman and Rosa (2004) gave a variety of estimates using SAS (SAS Institute Inc. 2014).
We are interested in the REML estimates which are available from package regress (Clifford
and McCullagh 2006).

R> set.seed(1234567)
R> meyer <- within(meyer, {
+ y[is.na(y)] <- rnorm(length(y[is.na(y)]),
+ mean(y, na.rm = TRUE), sd(y, na.rm = TRUE))
+ g1 <- ifelse(generation == 1, 1, 0)
+ g2 <- ifelse(generation == 2, 1, 0)
+ id <- animal

https://CRAN.R-project.org/package=gap
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+ animal <- ifelse(!is.na(animal), animal, 0)
+ dam <- ifelse(!is.na(dam), dam, 0)
+ sire <- ifelse(!is.na(sire), sire, 0)
+ })
R> G <- kin.morgan(meyer)$kin.matrix * 2
R> library("regress")
R> r <- regress(y ~ -1 + g1 + g2, ~ G, data = meyer)
R> r

Likelihood kernel: K = g1+g2

Maximized log likelihood with kernel K is -843.962

Linear Coefficients:
Estimate Std. Error

g1 222.994 1.429
g2 238.558 1.760

Variance Coefficients:
Estimate Std. Error

G 31.672 13.777
In 72.419 10.182

R> with(r, h2G(sigma, sigma.cov))

Vp = 104.091 SE = 9.925092
h2G = 0.3042677 SE = 0.1147779

Note that we deliberately filled the missing data according to the observed (we will relax this
later on), then employed the kin.morgan function to obtain the kinship matrix, which is in
turn used by the regress function from package regress. We have h2(SE) = 0.30 (0.11).

3.2. Bayesian approach

We now turn to the Bayesian approach and begin with a generic implementation based on the
BUGS (Bayesian inference using Gibbs sampling) specification. As most such implementations
would involve large samples, we moved away from WinBUGS (Lunn, Thomas, Best, and
Spiegelhalter 2000) and used OpenBUGS (OpenBUGS Foundation 2015) and JAGS under
Linux. Both allow for command line execution but as noted earlier (Sturtz, Ligges, and
Gelman 2005) data manipulation is required which can be greatly facilitated with OpenBUGS,
specifically using the R package R2OpenBUGS (Sturtz et al. 2005). We focused on JAGS as
it was better tuned under Linux with LAPACK (Anderson, Bai, Bischof, Blackford, Demmel,
Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, and Sorensen 1999), or Intel MKL,
(Intel 2013) and the R counterpart R2jags (Su and Yajima 2015). We use multiple chains
(e.g., 2 to 4), and Brooks-Gelman-Rubin (BGR) statistics, provided in JAGS or Stan, to
check convergence. Initial parameter values are generally based on subject matter knowledge
and/or parameter estimates from classical estimation.
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JAGS

First, we prepare the data in R and call JAGS via R2jags,

R> C <- chol(G)
R> N <- dim(meyer)[1]
R> data <- with(meyer,
+ list(N = N, y = y, g1 = g1, g2 = g2, u = rep(0, N), GI = solve(G)))
R> inits <- function() list(b1 = 0, b2 = 0, tau.p = 0.03, tau.r = 0.014)
R> parms <- c("b1", "b2", "p", "r", "h2")

We apply inverse gamma priors.

R> modelfile <- function() {
+ b1 ~ dnorm(0, 0.000001)
+ b2 ~ dnorm(0, 0.000001)
+ tau.p ~ dgamma(0.001, 0.001)
+ tau.r ~ dgamma(0.001, 0.001)
+ sigma.p <- 1 / sqrt(tau.p)
+ sigma.r <- 1 / sqrt(tau.r)
+ g[1:N] ~ dmnorm(u[], GI[, ] / p)
+ for (i in 1:N) {
+ y[i] ~ dnorm(b1 * g1[i] + b2 * g2[i] + g[i], tau.r)
+ }
+ p <- pow(sigma.p, 2)
+ r <- pow(sigma.r, 2)
+ h2 <- p / (p + r)
+ }
R> library("R2jags")
R> jagsfit <- jags(data, inits, parms, modelfile, n.chains = 2,
+ n.burnin = 500, n.iter = 5000)

Like OpenBUGS, the Normal distribution in JAGS is specified with respect to the precision.
The solve function returns the inverse so it is only calculated once. The results are very
close to the REML estimates.

Inference for Bugs model at "/tmp/RtmpBDC/model69497abe523a.txt", fit using
jags, 2 chains, each with 5000 iterations (first 500 discarded), n.thin = 4
n.sims = 2250 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat
b1 222.922 1.470 220.115 221.900 222.900 223.901 225.852 1.001
b2 238.520 1.735 235.074 237.358 238.555 239.656 241.806 1.001
h2 0.300 0.080 0.155 0.240 0.297 0.354 0.464 1.002
p 31.810 10.188 15.497 24.306 30.809 37.979 55.090 1.001
r 73.335 8.316 57.824 67.558 73.265 78.609 89.974 1.005
deviance 2181.332 25.940 2125.879 2164.537 2183.027 2199.645 2229.083 1.002

n.eff
b1 2200
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b2 2200
h2 820
p 1700
r 370
deviance 1900

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 336.4 and DIC = 2517.8
DIC is an estimate of expected predictive error (lower deviance is better).

The version with Cholesky decomposition is as follows, noting that the factored matrix needs
to be transposed.

R> data <- with(meyer, list(N = N, y = y, g1 = g1, g2 = g2, C = t(C)))
R> inits <- function() list(b1 = 0, b2 = 0, sigma.p = 0.03, sigma.r = 0.014)
R> modelfile = function() {
+ b1 ~ dnorm(0, 0.001)
+ b2 ~ dnorm(0, 0.001)
+ sigma.p ~ dunif(0, 1000)
+ sigma.r ~ dunif(0, 1000)
+ p <- pow(sigma.p, 2)
+ r <- pow(sigma.r, 2)
+ tau <- pow(sigma.r, -2)
+ g[1:N] <- sigma.p * C[, ] %*% z[]
+ for (i in 1:N) {
+ z[i] ~ dnorm(0, 1)
+ }
+ for (i in 1:N) {
+ y[i] ~ dnorm(b1 * g1[i] + b2 * g2[i] + g[i], tau)
+ }
+ h2 <- p / (p + r)
+ }
R> jagsfit2 <- jags(data, inits, parms, modelfile, n.chains = 2,
+ n.burnin = 500, n.iter = 5000)

where we also used uniform priors for the variance components. Tthe results are similar.

Inference for Bugs model at "/tmp/RtmpBDC/model69493125f2e2.txt", fit using
jags, 2 chains, each with 5000 iterations (first 500 discarded), n.thin = 4
n.sims = 2250 iterations saved

mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat
b1 222.131 1.422 219.462 221.142 222.115 223.023 225.001 1.001
b2 237.450 1.749 234.014 236.310 237.479 238.592 240.985 1.004
h2 0.305 0.081 0.158 0.247 0.301 0.363 0.465 1.001
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p 32.690 10.297 16.105 25.196 31.516 39.138 55.136 1.001
r 73.642 8.845 57.751 67.597 72.856 79.268 92.616 1.002
deviance 2181.013 26.007 2127.094 2164.740 2182.502 2198.604 2228.893 1.001

n.eff
b1 2200
b2 2200
h2 2200
p 2200
r 1200
deviance 2200

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 338.2 and DIC = 2519.2
DIC is an estimate of expected predictive error (lower deviance is better).

Stan
We further experimented with Stan, which is appealing to us as it implemented faster sampling
algorithms (Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin 2014, p. 307). We worked on
both the R interface, rstan (Stan Development Team 2016b), and the command line version,
cmdstan (Stan Development Team 2016a).

R> data <- with(meyer, list(N = N, y = y, g1 = g1, g2 = g2, G = G))
R> library("rstan")
R> meyer.stan <- "
+ data {
+ int N;
+ vector[N] y;
+ vector[N] g1;
+ vector[N] g2;
+ matrix[N, N] G;
+ }
+ transformed data {
+ matrix[N, N] C;
+ C = cholesky_decompose(G);
+ }
+ parameters {
+ vector[2] b;
+ vector[N] z;
+ real sigma_p2;
+ real sigma_r2;
+ }
+ transformed parameters {
+ real sigma_p;
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+ real sigma_r;
+ vector[N] g;
+ sigma_p = sqrt(sigma_p2);
+ sigma_r = sqrt(sigma_r2);
+ g = sigma_p * C * z;
+ }
+ model {
+ b ~ normal(0, 1000);
+ sigma_p2 ~ inv_gamma(0.001, 0.001);
+ sigma_r2 ~ inv_gamma(0.001, 0.001);
+ z ~ normal(0, 1);
+ y ~ normal(b[1] * g1 + b[2] * g2 + g, sigma_r);
+ }
+ generated quantities {
+ real h2;
+ real p;
+ real r;
+ p = sigma_p2;
+ r = sigma_r2;
+ h2 = p / (p + r);
+ }
+ "
R> parms <- c("b", "p", "r", "h2")
R> f1 <- stan(model_code = meyer.stan, data = data, chains = 2, iter = 500,
+ verbose = FALSE)
R> f2 <- stan(fit = f1, data = data, chains = 2, iter = 5000, pars = parms,
+ verbose = FALSE)

where results from the first stan call is used as input to the second call. Note that the
program is sectioned with data passed from R and the part which is in transformed data.
These are followed by parameters and transformed parameters before they are used in
model. Our quantities of interest can further be obtained from generated quantities.
The results from Stan are shown below and in Figure 1,

Inference for Stan model: df0c4ce12df598b4fcdd553dfe7d2cee.
2 chains, each with iter=5000; warmup=2500; thin=1;
post-warmup draws per chain=2500, total post-warmup draws=5000.

mean se_mean sd 2.5% 25% 50% 75% 97.5%
b[1] 223.002 0.034 1.486 220.196 222.000 222.931 223.991 226.104
b[2] 238.582 0.036 1.765 235.219 237.396 238.534 239.729 242.170
p 32.082 0.308 10.407 14.705 24.671 30.850 38.697 55.176
r 73.372 0.216 8.501 57.613 67.483 72.975 78.737 91.190
h2 0.301 0.003 0.082 0.149 0.245 0.297 0.356 0.470

n_eff Rhat
b[1] 1955 1.000
b[2] 2385 1.000
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Figure 1: Density plot for the Meyer data from Stan.

p 1144 1.001
r 1555 1.000
h2 1051 1.001

Samples were drawn using NUTS(diag_e) at Fri Mar 30 17:55:39 2018.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

Potential scale reduction factors:

Point est. Upper C.I.
b[1] 1 1.00
b[2] 1 1.00
p 1 1.01
r 1 1.00
h2 1 1.01
lp__ 1 1.01

Multivariate psrf

1

where the BGR diagnostic statistics show convergence of the parameters. The overlapped
density plots for the two chains are also shown in Figure 1.
Although both OpenBUGS and JAGS work as standalone programs, the counterpart in
Stan, cmdstan, is much easier. We simply need to make a copy of the program above, say
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meyer.stan, to the cmdstan directory and issue “stanc” to generate the C++ source or even
“make meyer” to generate the executable, We first prepare for our data in R and then use
functions bugs.data and bugs2jags to output an input file for meyer,

R> library("R2OpenBUGS")
R> data <- with(meyer, list(N = N, y = y, g1 = g1, g2 = g2, G = G))
R> bugs.data(data, data.file = "meyer_bugs.txt")

[1] "meyer_bugs.txt"

R> library("coda")
R> bugs2jags("meyer_bugs.txt", "meyer_stan.txt")

and we can call

$ ./meyer sample data file=meyer_stan.txt output file=meyer.csv
$ stansummary meyer.csv

The data file (meyer_stan.txt) is used by the executable to generate our output in meyer.csv,
and the summary statistics are given by the print utility. Equally, rstan can also pick up
results to allow for graphical facilities in R.

4. Additional considerations

4.1. Parallel computation

It is possible to take advantage of multicore facility in R for multiple chains via package
parallel (R Core Team 2018). This can be done as follows using the Meyer data.

JAGS

R> attach(meyer)
R> library("R2jags")
R> out <- jags.parallel(data, inits, parms, modelfile, n.chains = 4,
+ n.burnin = 500, n.iter = 5000)
R> detach(meyer)

Note that the data needs to be attached.

Stan

R> library("parallel")
R> parms <- c("b", "p", "r", "h2")
R> f1 <- stan(model_code = meyer.stan, data = data, chains = 4, iter = 500,
+ verbose = FALSE)
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R> l <- mclapply(1:4, mc.cores = 4, function(i)
+ stan(fit = f1, seed = 12345, data = data, iter = 5000,
+ chains = 1, chain_id = i, refresh = -1))
R> f2 <- sflist2stanfit(l)

One can use the detectCores() function to obtain the number of cores on the system and
here four chains are run in parallel. Alternatively, a call can be made with

R> options(mc.cores = parallel::detectCores() - 1)

4.2. Nonpositive definite G matrix

We found it more likely to have a nonpositive definite G matrix in (4) and (5) than a kinship
matrix. In theory, we can get around this with a perturbation (ε) as described in Guo and
Thompson (1991, p. 174), namely to replace G with G̃ ≡ (G+ ε/σ2

gI), so that σ2
gG̃ = σ2

gG+ ε
and σ̃2 = σ2 − ε one only needs to amend σ2 as σ̃2 + ε. The is according to the Gerschgorin
theorem (Varga 2004, Theorem 1.4) as popularized by ridge regression.

R> modelfile <- function() {
+ b1 ~ dnorm(0, 0.000001)
+ b2 ~ dnorm(0, 0.000001)
+ sigma.p ~ dunif(0, 1000)
+ sigma.r ~ dunif(0, 1000)
+ p <- pow(sigma.p, 2)
+ r <- pow(sigma.r, 2)
+ tau <- pow(sigma.r, -2)
+ g[1:N] ~ dmnorm(u[], inverse(p * G[, ] + eps * I[, ]))
+ for (i in 1:N) {
+ y[i] ~ dnorm(b1 * g1[i] + b2 * g2[i] + g[i], tau)
+ }
+ h2 <- p / (p + r)
+ }

This will be the same as before when ε = 0. While this is mathematically viable, it involves
additional matrix inversion in JAGS making our task even more formidable for MCMC con-
vergence. We used (G + εI) in place of the relationship matrix and σ2 + εσ2

g as residual
variance, which do not involve direct simulation from the multivariate Normal distribution.

5. Application: Familial vs. genomic heritabilities
The data used in this section was derived from a large family study which mirrors work by
(Klimentidis, Vazquez, de Los, Allison, Dransfield, and Thannickal 2013), to enable contrast-
ing genetic relationship from family structure and genome-wide data.
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Genomic data Family structure
Variance Variance

components SE components SE
σ2
g 10.38 0.64 10.61 0.74
σ2 12.33 0.50 12.01 0.63

h2 = σ2
g/(σ2

g + σ2) 0.46 0.02 0.47 0.03
l0 −13479.85 −13572.17
l −13724.35 −13724.35

χ2 = −2(l − l0) 489.00 304.36

Table 1: Estimates based on familial and genomic relationship matrices.

5.1. Frequentist approach

Two relationship matrices based on family structure and genomic data were generated by R
and GCTA, respectively, to be used by GCTA for REML estimation.
The genetic relationship matrix was built from pedigree structures with package kinship2
(Therneau and Sinnwell 2015),

R> trios <- read.table("trios.dat", header = TRUE)
R> library("kinship2")
R> kmat <- with(trios, kinship(id, fid, mid))
R> id <- trios[c("pid", "id")]
R> N <- dim(trios)[1]
R> M <- rep(N, N * (N + 1) / 2)
R> library("gap")
R> WriteGRM("PRM", id, M, 2 * kmat)

which was used by GCTA for REML estimates. Assuming that phenotype information is
stored in p.dat, GCTA can be called as follows,

$ gcta64 --reml --grm-gz PRM --pheno p.dat --out PRM --thread-num 10

The GRM as with REML estimates were obtained with GCTA as follows,

$ gcta64 --reml --grm-gz GRM --pheno p.dat --out GRM --thread-num 10

Note the calls to GCTA should be run under the Linux shell directly. The results are shown
in Table 5.1, where l0 and l are the log-likelihoods with and without the polygenic compo-
nent, respectively. GCTA gave estimates of heritability which was remarkably similar, where
h2(SE) equals 0.46 (0.02) and 0.47 (0.03) with adjustment for sex and age, respectively for
genome-based and family-based estimates. One may rather use genomic structure as it is
associated with a greater likelihood.

5.2. Bayesian approach

Besides results from REML shown above, in a separation analysis on lung function from the
same cohort, the two approaches yielded almost identical heritability estimates (Klimentidis
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et al. 2013). The marked difference in deviance prompted us to seek to characterize variability
of heritability in a Bayesian framework.
For this “large N” (N � 1, 000) problem, the implementation in either JAGS or Stan became
prohibitively slow, we therefore resorted to specific implementations in packages MCMCglmm
and BLR that we were aware of. However, an adaption of package MCMCglmm with GRM
took about three days on our Linux system with 300 burn-ins and 1,000 iterations and it
is infeasible to consider large number of iterations. With package BLR, we encountered the
issue of nonpositive definite GRM. While adding a perturbation to the GRM it was not clear
how our results will be adjusted. We also sought for the possibility of approximate Bayesian
methods through which AnimalINLA (Holand, Steinsland, Martino, and Jensen 2013) came to
our attention. It was derived from package INLA (integrated nested Laplace approximation;
Rue, Martino, Lindgren, Simpson, Riebler, and Krainski 2014). It was not obvious it can
handle GRM but we would like to explore.
First, we set up the data to be used,

R> pheno <- read.table("p.dat", col.names = c("pid", "id", "r"))
R> N <- nrow(pheno)
R> is.na(trios[trios == 0]) <- TRUE
R> f <- merge(pheno, trios[, -1], by = "id", all = TRUE)
R> p <- data.frame(f[with(f, order(pid, id)), ], u = seq_len(N),
+ e = seq_len(N))
R> rownames(p) <- seq_len(N)

AnimalINLA
The AnimalINLA package was used first taking family structures into account.

Using family structure

R> library("AnimalINLA")
R> library("pedigree")
R> trios <- add.Inds(p[c("id", "fid", "mid")])
R> trios[is.na(trios)] <- 0
R> data <- merge(trios, p[c("id", "r")], by = "id", all.x = TRUE)
R> nr <- nrow(data)
R> p2 <- data.frame(data, u = 1:nr, e = 1:nr)
R> p2 <- within(p2,id <- as.integer(id))
R> xx <- compute.Ainverse(p2[c("id", "fid", "mid")])
R> fit <- animal.inla(response = "r", fixed = NULL,
+ genetic = "id", Ainverse = xx, type.data = "gaussian",
+ data = p2, sigma.e = TRUE, dic = TRUE)

where package pedigree (Coster 2013) is called to fill up nonexistent individuals. The com-
putation was done in minutes on our Linux with the default setup and the output is as
follows,

R> with(fit, summary.hyperparam)
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Figure 2: Posterior distributions according to package AnimalINLA.

mean sd 0.025quant 0.5quant 0.975quant
Heritability 0.4638121 0.02627007 0.4107825 0.4644854 0.5139594
Variance for id 10.5297315 0.68491690 9.2106374 10.5260495 11.8806914
Variance for e 12.1992915 0.55650775 11.1555301 12.1825397 13.3272536

The S3 plot method for the returned ‘Animalinla’ object always sets xlim = c(0, 1) and
created plots on the console so we revised this.

R> par(mfrow = c(3, 1))
R> plot(fit$sigma.u, type = "l", ylab = "Posterior",
+ xlab = expression(paste(sigma[u]^2)))
R> plot(fit$sigma.e, type = "l", ylab = "Posterior",
+ xlab = expression(paste(sigma^2)))
R> plot(fit$gaussian.h, type = "l", ylab = "Posterior",
+ xlab = expression(paste(h^2)), xlim = c(0, 1))

The posterior distribution of h2 is shown in Figure 2.
By inspecting the structure of object xx above, we could build an compatible object to one
from compute.Ainverse function but the GRM looses the sparseness in the kinship matrix
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from family structure so is expected to be slower compared to GCTA.

BLR

Our call is as follows,

R> y <- as.matrix(r)
R> eps <- 0.1
R> m <- BLR(y,
+ GF = list(ID = seq_len(N), A = g$GRM + diag(eps, N)),
+ prior = list(varU = list(df = 3, S = 4), varE = list(df = 3, S = 4)),
+ nIter = 500000, burnIn = 150000, thin = 1, saveAt = "fgh.BLR_")
R> attach(m)
R> varU

[,1]
[1,] 10.37756

R> varE

[,1]
[1] 11.29452

R> varU / ((1 + eps) * varU + varE)

[,1]
[1,] 0.4569633

R> detach(m)
R> U <- as.mcmc(scan("fgh.BLR_varU.dat")[-(1:150000)])
R> E <- as.mcmc(scan("fgh.BLR_varE.dat")[-(1:150000)])
R> e <- as.mcmc(cbind(U, E, h2 = U / ((1 + eps) * U + E)))
R> summary(e)$statistics

Mean SD Naive SE Time-series SE
U 10.3755704 0.63883841 6.929175e-04 0.004220765
E 11.2960400 0.55007729 5.966426e-04 0.003455728
h2 0.4567216 0.02375862 2.576984e-05 0.000160990

R> HPDinterval(e)

lower upper
U 9.1322010 11.6339900
E 10.2325900 12.3829900
h2 0.4103476 0.5032604
attr(,"Probability")
[1] 0.95
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the columns and rows of the GRM are indexed in the object g$id whose ordering was used
to compromise with that of the phenotypic data. The argument bF specifies flat priors for
regression coefficients earlier. The argument A is a “symmetric, positive definite” matrix (de
los Campos et al. 2013). The priors for the polygenic (varU) and residual (varE) variances
follow de los Campos et al. (2013) as scaled inverse χ2 with expectation S/(df − 2), S =
VAR(y)(1 − h2)(df − 2). This is roughly the same for both variances. The perturbation
ε = 0.1 has enabled the GRM to be positive definite. Note that the saveAt option informs
the function to keep values of bF, varU and varE at each iteration to fgh.BLR_bF.dat,
fgh.BLR_varU.dat and fgh.BLR_varE.dat, respectively. Figure 3 shows the results of a
very long chain (150,000 burn-ins, 350,000 iterations). The sequences were also converted
into an ‘mcmc’ object used in package coda from which we obtained the HPD interval via
function HPDinterval. The density plot is indeed similar to Figure 2.

R> plot(e)

6. Summary
We implemented Bayesian linear mixed models that involve a direct use of the relationship
matrix. Generic software such as JAGS or Stan renders greater simplicity than purpose-
written software and more flexibility for complex models. Through data analysis we showed
that the frequentist and Bayesian approaches can give comparable point estimates but the
latter is desirable with its ability to use prior information and produce posterior distributions.
For large samples, unlike the usual availability of family structures and therefore fast on-the-
fly calculation of the inverse of the precision matrix involving polygenic variance (Waldmann
2009; Damgaard 2007) they have great difficulty in dealing with large genomic matrices. We
therefore exploited matrix decomposition and parallel computation. We also compiled JAGS
using both LAPACK and Intel MKL. Given that the computing time remains prohibitive,
we further used approximate Bayesian inference such as Laplace approximation, in particular
INLA as in package AnimalINLA, which was again humbled by the high dimensionality and
non-sparsity density of the GRM. Our analysis also naturally called up a number of packages
in the R system with its ability for data management, powerful programming and modeling.
The implementation has not been seen in the literature and Stan gave comparable results to
the usual REML estimation and those obtained with package JAGS. Our setup enables rela-
tionship matrix from either family or population data directly into a polygenic model. The
comparison of both types of relationship matrices is now possible with package MCMCglmm
from which a function MCMCgrm was implemented in package gap. Package BLR runs faster
but would fail with a non-positive definite G matrix. Unlike Guo and Thompson (1991),
our approach does not involve repeated inversion or factorization of the variance-covariance
matrix at the sampling stage and has enabled analysis package BLR. The analysis also went
beyond our previous experiment (Zhao and Luan 2012), whose focus was only on frequen-
tist approaches. A reviewer pointed out work by Bae, Perls, and Sebastiani (2014) noting
previous work on decomposition and conditioning by Waldmann, Hallander, Hoti, and Sil-
lanpää (2008); Hallander, Waldmann, Wang, and Sillanpää (2010) where they “proposed an
approach based on a decomposition of the multivariate Normal distribution of the random
effects into univariate Normal distributions using conditional distributions” but “fails to pro-
duce accurate results with large multigenerational families” though the authors “were not able
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Figure 3: Posterior distributions of polygenic variance (top), residual variance (middle) and
h2 (bottom) according to package BLR.

to pinpoint the reason for the apparent discrepancy” (between the conditioning and singular
value decomposition). In essence, the model as in Bae et al. (2014) has a covariance structure

V = 2σ2
g


K1

K2
. . .

Km

+ σ2I, (6)

where Ki are the kinship matrices associate with a particular family i, i = 1, . . . ,m. In our
case, the GRM does not have the block structure. In Hallander et al. (2010), dominance
effects were also modeled and in principle can be included in our approach similar to GRM.
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We hope that our work will facilitate exploration of other practical issues of Bayesian linear
mixed models with polygenic effects, some of which are highlighted here.

6.1. Non-genetic effects

Although we have focused on the polygenic effects, their non-genetic counterparts can be
an indispensable part of the research. For instance, BMI may be linked to lifestyle and
psychosocial factors such as diet, physical activity and mental health. SNP effects are now
commonly derived as part of a GWAS from the so-called mixed linear effects model involving
polygenic effects and SNP dosage as fixed effects. Gene-environment interactions are also
important.
For non-genetic effects, the g-prior (Zellner 1986) is often used. In our notation, this amounts
to β ∼ MVN (β0, aσ

2(X>X)−1) where β0 is a hyperparameter and a a positive scalar often
chosen to be the sample size, noting the use of a instead of g as in the literature is simply to
avoid confusion with the polygenic effects g throughout this paper and elsewhere. The prior
can facilitate model comparison since in the case of multiple linear regression closed form
regression coefficients can be obtained but some undesirable property in model comparison
has also been documented (e.g., Pericchi 2005).

6.2. Efficient implementation

The polygenic modeling would benefit greatly from a truly efficient Bayesian computation
software system involving fine-tuned algorithms. Our limited experience showed that JAGS
and Stan are feasible for moderate sample size (N ≈ 1, 000) but become very time-consuming
when it gets larger. Besides approaches described in Section 4.1, JAGS can be compiled to
use multicore facility. Recent versions of rstan actually have an option cores to automatically
use all available cores. We do not attempt to elaborate this here as it is an active and evolving
area with work such as Kruschke (2015) giving further information.
Our work suggests that a combination of generic Bayesian analysis systems such as JAGS
and Stan together with specific software such as package BLR will still be appealing. For
the Framingham data, we also experimented with package MCMCglmm and the function
MCMCgrm; both took considerably longer than package BLR. Ahlinder and Sillanpää (2013)
made a further attempt to speed up calculations by treating β and u as nuisance parameters
in the posterior distribution

P(β, u, σ2
β, σ

2
g , σ

2|y) ∝ P(y|β, u, σ2)P(β|σ2
β)P(u|σ2

u)P(σ2
β)P(σ2

u)P(σ2)

so that P(σ2
β, σ

2
u, σ

2|y) ∝ P(σ2
β)P(σ2

u)P(σ2)
∫

P(y|β, u, σ2)P(β|σ2
β)P(u|σ2

u)dβdu but the likeli-
hood specification is still involved. Bayesian inference using Laplace approximation in the
spirit of INLA is also available from LaplacesDemon (Statisticat, LLC. 2015a) and a coun-
terpart LaplacesDemonCpp (Statisticat, LLC. 2015b) with an incremental inclusion of C++.

6.3. Missing outcome

It is more involved to allow for missing data. We did not address this explicitly and in general
that is possible (Stan Development Team 2016c, p. 176). However, we took advantage of the
built-in mechanism in package BLR. For the Meyer data without filling the missing data, the
results are obtained as follows,
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R> set.seed(1234567)
R> meyer <- within(meyer, {
+ yNa <- y
+ g1 <- ifelse(generation == 1, 1, 0)
+ g2 <- ifelse(generation == 2, 1, 0)
+ id <- animal
+ animal <- ifelse(!is.na(animal), animal, 0)
+ dam <- ifelse(!is.na(dam), dam, 0)
+ sire <- ifelse(!is.na(sire), sire, 0)
+ })
R> G <- kin.morgan(meyer)$kin.matrix * 2
R> library("regress")
R> r <- regress(y ~ -1 + g1 + g2, ~ G, data = meyer)
R> r
R> library("BLR")
R> attach(meyer)
R> X <- as.matrix(meyer[c("g1", "g2")])
R> m <- BLR(yNa, XF = X, GF = list(ID = 1:nrow(G), A = G),
+ prior = list(varE = list(df = 1, S = 0.25),
+ varU = list(df = 1, S = 0.63)),
+ nIter = 5000, burnIn = 500, thin = 1, saveAt = "meyer.BLR")
R> with(r, h2G(sigma, sigma.cov))

Vp = 104.091 SE = 9.925092
h2G = 0.3042677 SE = 0.1147779

R> names(m)

[1] "y" "weights" "mu" "varE" "yHat" "SD.yHat"
[7] "whichNa" "fit" "bF" "SD.bF" "u" "SD.u"

[13] "varU" "prior" "nIter" "burnIn" "thin"

R> attach(m)
R> yHat[whichNa]

numeric(0)

R> mu

[1] 327.9259

R> bF

g1 g2
-105.11362 -89.52557

R> mu + bF
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g1 g2
222.8123 238.4004

R> varU

[,1]
[1,] 29.66097

R> varE

[1] 74.08534

R> varU / (varU + varE)

[,1]
[1,] 0.285899

with which we would be more comfortable. It seems that both frequentist and Bayesian
approaches yielded smaller variance components compared to the imputation of missing out-
come a priori. From the quantity mu and bF we are able to recover regression coefficients for
the fixed effects comparable to what we have seen earlier. Furthermore, a vector whichNa
indicates which observation has a missing outcome so that yHat[whichNa] contains predicted
values for those missing outcomes.
Package GCTA can give heritability and standard error estimates for a quantitative trait
based on a large number of SNPs. The documentation data involves a quantitative trait for
3,925 individuals and 1,000 SNPs, leading to h2(SE) = 0.022 (0.009). Now we ran 5,000
burn-ins and 10,000 iterations with package BLR and obtained 0.119 (0.001) and 95% HPD
interval (0.098–0.142), still slightly higher than that based on REML estimation.
Gaussian outcome is but one of many scenarios for which polygenic effects can be included.
Our frequentist counterparts include packages regress, pedigreemm (Vazquez, Bates, Rosa,
Gianola, and Weigel 2010) and coxme (Therneau 2015), all in the R environment. They could
involve problems with outcomes being binary, Poisson, time-to-event, etc. Our focus was on
h2 and there should be some similarity when we approach other indicators from the mixed
models such as coefficient of determination (R2) (Nakagawa and Schielzeth 2013).
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