P values from linear and linear mixed models

As its name implies, P values are provided by the lmerTest package, which will be illustrated with the documentation example here.

require(lmerTest)
boxplot(Reaction~Days, data=sleepstudy, main="Reaction by Days",
        xlab="Days", ylab="Reaction", col="blue", border="black")

We see a trend of Reaction by Days, so it is reasonable to fit a linear regression to quantify the relationship observed,

l <- lm(Reaction ~ Days, sleepstudy)
s <- summary(l)
s
## 
## Call:
## lm(formula = Reaction ~ Days, data = sleepstudy)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -110.848  -27.483    1.546   26.142  139.953 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  251.405      6.610  38.033  < 2e-16 ***
## Days          10.467      1.238   8.454 9.89e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 47.71 on 178 degrees of freedom
## Multiple R-squared:  0.2865, Adjusted R-squared:  0.2825 
## F-statistic: 71.46 on 1 and 178 DF,  p-value: 9.894e-15
names(s)
##  [1] "call"          "terms"         "residuals"     "coefficients" 
##  [5] "aliased"       "sigma"         "df"            "r.squared"    
##  [9] "adj.r.squared" "fstatistic"    "cov.unscaled"

showing significant association between Reaction and Days. We now turn to the following question: how does the association alter after accounting for individual differences? The impact of Subject effect can be revealed as follows,

boxplot(Reaction~Subject, data=sleepstudy, main="Reaction by Subject",
        xlab="Subject", ylab="Reaction", col="orange", border="brown")

suggesting it is more approriate to fit a random effect model, in the sense that the Subject effect randomly plays into the association of interest:

r <- lme4::lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
s <- summary(r)
s
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (Days | Subject)
##    Data: sleepstudy
## 
## REML criterion at convergence: 1743.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9536 -0.4634  0.0231  0.4633  5.1793 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  Subject  (Intercept) 611.90   24.737       
##           Days         35.08    5.923   0.07
##  Residual             654.94   25.592       
## Number of obs: 180, groups:  Subject, 18
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  251.405      6.824  36.843
## Days          10.467      1.546   6.771
## 
## Correlation of Fixed Effects:
##      (Intr)
## Days -0.138
names(s)
##  [1] "methTitle"    "objClass"     "devcomp"      "isLmer"      
##  [5] "useScale"     "logLik"       "family"       "link"        
##  [9] "ngrps"        "coefficients" "sigma"        "vcov"        
## [13] "varcor"       "AICtab"       "call"         "residuals"   
## [17] "fitMsgs"      "optinfo"

We see the same estimate of effect but a larger standard error for Days in the linear mixed model compared to that in the linear regression model. We then use lmer from lmerTest.

m <- lmerTest::lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
class(m)
## [1] "lmerModLmerTest"
## attr(,"package")
## [1] "lmerTest"
s <-summary(m)
s
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Reaction ~ Days + (Days | Subject)
##    Data: sleepstudy
## 
## REML criterion at convergence: 1743.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9536 -0.4634  0.0231  0.4633  5.1793 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  Subject  (Intercept) 611.90   24.737       
##           Days         35.08    5.923   0.07
##  Residual             654.94   25.592       
## Number of obs: 180, groups:  Subject, 18
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)  251.405      6.824  17.005  36.843  < 2e-16 ***
## Days          10.467      1.546  16.995   6.771 3.27e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##      (Intr)
## Days -0.138
names(s)
##  [1] "methTitle"    "objClass"     "devcomp"      "isLmer"      
##  [5] "useScale"     "logLik"       "family"       "link"        
##  [9] "ngrps"        "coefficients" "sigma"        "vcov"        
## [13] "varcor"       "AICtab"       "call"         "residuals"   
## [17] "fitMsgs"      "optinfo"
with(s,coefficients)[2,5]
## [1] 3.273014e-06

The P value for Days differs by orders of magnitude from that from a linear regression.