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1 Maintainer’s note

The reference should read1..

Schafer, J.L. (1997) Imputation of missing covariates under a multivariate
linear mixed model. Technical report 97-04, Dept. of Statistics, The Penn-
sylvania State University.

You can also refer to the following paper.

Schafer J L, Yucel RM (2002). Computational strategies for multivariate
linear mixed-effects models with missing values. Journal of Computational
and Graphical Statistics. 11:437-457

The marijuana data in the package is reproduced here,

Table 1: Change in heart rate recorded 15 and 90 minutes after marijuana
use, measured in beats per minute above baseline

15 minutes 90 minutes
Subject Placebo Low High Placebo Low High

1 16 20 16 20 -6 -4
2 12 24 12 -6 4 -8
3 8 8 26 -4 4 8
4 20 8 - - 20 -4
5 8 4 -8 - 22 -8
6 10 20 28 -20 -4 -4
7 4 28 24 12 8 18
8 -8 20 24 -3 8 -24
9 - 20 24 8 12 -

One can use help(ecme,package=“pan”) to see the example code.

1Note that the technical report is now available from
http://sites.stat.psu.edu/reports/1997/tr9704.pdf and briefly described at
http://stat.psu.edu/research-old/technical-reports/archived-technical-reports
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The technical report starts from next page.

3



Imputation of missing covariatesunder a multivariate linear mixed modelJoseph L. Schafer �February 13, 1997
Linear mixed-e�ects models have been widely used in the analysis of longitudinal and clus-tered data. Standard �tting procedures for these models allow for imbalance due to missingresponses, but little has been done for problems of missing covariates. This article presentsa method for creating multiple imputations (Rubin, 1987) of missing covariates, allowingthe imputed data to be analyzed by current complete-data methods. The imputation pro-cedure relies on a multivariate extension of a popular linear mixed-e�ects model (Laird andWare, 1982). The multivariate model is consistent with a conditional linear mixed modelfor each covariate, with �xed e�ects for all other covariates. The technique is illustratedon a longitudinal study of adolescent substance use with large amounts of data missing bydesign.Key Words: Gibbs sampling, linear mixed-e�ects model, longitudinal data, random ef-fects, repeated measures
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1 IntroductionLet yi denote an ni � r matrix of multivariate data for sample unit i, i = 1; : : : ; m, whereeach row of yi is a joint realization of variables Y1; : : : ; Yr. Let us assume that yi follows amultivariate linear mixed model of the formyi = Xi� + Zibi + "i; (1)where Xi (ni � p) and Zi (ni � q) are known covariate matrices, � (p � r) is a matrix ofregression coe�cients common to all units (the \�xed e�ects"), and bi (q � r) is a matrixof coe�cients speci�c to unit i (the \random e�ects"). We will assume that the ni rows of"i are independently distributed as N(0;�), and that the random e�ects are distributed asbVi � N(0;	) independently for i = 1; : : : ; m. The superscript \V " indicates vectorizationof a matrix by stacking its columns. No further structure will be imposed on the covariancematrices or �xed e�ects; we will assume only that � 2 Rpr, � > 0, and 	 > 0. Withoutconditioning on b1; : : : ; bm, the model becomesy Vi � N( (Xi�)V ; (Ir 
 Zi)	(Ir 
 Zi)T + (�
 Ini) ): (2)The univariate (r = 1) version,yi � N(Xi�; Zi	ZTi + �2Ini ); (3)and more general univariate models have been extensively treated by Laird and Ware(1982); Jennrich and Schluchter (1986); Laird, Lange, and Stram (1987); Lindstrom andBates (1988); and others. Estimation procedures|both ordinary and restricted maximum-likelihood|for the univariate versions are available in major statistical packages. Thepresent article discusses inference for the multivariate version when arbitrary portions ofthe yi may be ignorably missing or missing at random, in the sense described by Rubin(1976) and Little and Rubin (1987). 2



Natural applications for model (2) include (a) analyses of multivariate longitudinal datain which a set of r variables is measured for subject i at ni occasions; and (b) analyses ofclustered multivariate cross-sectional data in which subjects are nested within groups i =1; : : : ; m of varying sizes ni. In (a), the measurements times will typically be incorporated insome fashion into Xi and Zi; because these matrices are not assumed to have any particularform, the model allows time-varying covariates and measurement times that vary by subject.In (b), Xi and Zi may contain descriptors of both the subjects and the groups to which theybelong, allowing simultaneous estimation of e�ects due to characteristics at the subject andgroup levels.In many analyses, it is natural to regard one of the variables (say Yr) as a responseand the remaining variables (Y1; : : : ; Yr�1) as potential predictors; interest is focused onthe conditional distribution of Yr given Y1; : : : ; Yr�1, and the parameters governing thejoint distribution of Y1; : : : ; Yr�1 are of little interest. Given that, multivariate models forY1; : : : ; Yr are still worth considering in many situations. One such situation is longitudinalmodeling with missing covariates. Notice that the multivariate model (2) for Y1; : : : ; Yrimplies a conditional univariate model of the form (3) for Yr, where the covariate matrixXi has been augmented to include columns for Y1; : : : ; Yr�1. When missing values occur onY1; : : : ; Yr�1, a full parametric model for Y1; : : : ; Yr provides a vehicle for inference in theconditional univariate submodel.More generally, a full multivariate model for Y1; : : : ; Yr can be quite useful when imput-ing for nonresponse in multivariate panel data. Imputation, especially multiple imputation(Rubin, 1987), has many important advantages over other methods for handling nonre-sponse. If values for the missing responses can be imputed in a statistically sound manner,the imputed dataset may be used for a variety of subsequent analyses. Many multivariateincomplete-data problems that were formerly troublesome can now be handled quite rou-tinely through model-based multiple imputation (Schafer, 1996). In a multivariate panel3



study, an imputation model should simultaneously preserve the relationships among vari-ables measured for a subject at a single point in time, and among measurements of thesame variable for a subject at di�erent points in time. Multivariate mixed-e�ects modelssuch as (2) are a natural choice, because they can e�ectively pool information within andacross panels without a massive proliferation of parameters. The assumptions of a stableresidual covariance matrix � and errors that are conditionally (given bi) independent acrosstime seems especially helpful; more general structures may be computationally troublesomeor di�cult to estimate (see Section 5). When this model is used for imputation, only thevariables to be imputed need be included among Y1; : : : ; Yr; additional covariates that arecompletely observed may be incorporated into Xi or Zi without distributional assumptions.A motivating example, to be discussed in Section 4, comes from a study of adolescentsubstance use. For a period of six years, school children received questionnaires designedto measure attitudes and behaviors regarding the use of controlled substances. Researcherswanted to examine interrelationships among three time-varying covariates: a compositemeasure of self-reported alcohol use (Y1), and measures of the perceived positive (Y2) andnegative (Y3) consequences of alcohol use. Large amounts of data were missing by design,because Y2 and Y3 were measured for at most a subsample of students in each year. Usingthe techniques described below, values for the missing items were multiply imputed, allow-ing us to subsequently �t a conventional linear growth-curve model for alcohol use giventhe perceived consequences of use.A recent paper by Liu, Taylor and Belin (1995) discussed the use of a multivariatemodel similar to (1) for imputation of missing covariates in longitudinal studies. Theirmodel was less general, however, because it imposed special structure upon Xi, Zi, and �.In particular, they assumed a diagonal form for � which is often unrealistic and undesirable.Correlations among the columns of �i can be a crucial aspect of an imputation procedure,because individual-level deviations from a norm in one variable may be highly predictive of4



deviations on another variable. Imputing under a multivariate model that does not allowresidual correlations among Y1; : : : ; Yr may be essentially no di�erent from imputing eachvariable Yj separately under a univariate model. In the adolescent substance-use exampleof Section 4, the nonzero correlations among the three time-varying covariates are crucialfor predicting a child's missing value for Y1 when Y2 and/or Y3 are observed, and vice-versa.Without missing data, techniques for �tting the multivariate model (1) would be rela-tively straightforward extensions of existing methods for the univariate case. When miss-ing values occur within y1; : : : ; ym in arbitrary patterns, however, direct likelihood-basedinferences about the unknown parameters � = (�;�;	) may be di�cult to obtain. Sec-tion 2 discusses general computational strategies for �tting the multivariate linear mixedmodel. Section 3 presents a Gibbs sampler that may be used to create model-based multi-ple imputations of the missing data for subsequent analyses. The technique is applied tosubstance-use data in Section 4, and Section 5 presents further discussion on the use of thismodel and many possible extensions.2 Strategies for model �ttingLet Y = (y1; : : : ; ym) denote the complete data without missing values. If Y were seen,inferences about the parameters � = (�;�;	) could be based on a likelihood function pro-portional to the product (i = 1; : : : ; m) of the normal density functions implied by (2).The �xed e�ects � can be removed from this likelihood function in one of two ways: pro-�ling, in which � is replaced by its conditional maximum given (�;	); and marginalizing,in which the likelihood is replaced by its inde�nite integral with respect to �. Both thepro�le and marginal likelihoods can be written in closed form as functions of the general-ized least-squares estimate for � given (�;	). Maximizing the former produces ordinarymaximum-likelihood (ML) estimates, whereas maximizing the latter leads to restrictedmaximum-likelihood (RML) estimates. 5



For the univariate (r = 1) version of this model, Lindstrom and Bates (1988) presentNewton-Raphson algorithms for ML and RML estimation. Newton-Raphson has excellentlocal convergence behavior but requires careful implementation. The calculations requiredto obtain derivatives of the loglikelihood at each iteration are complex and can be quiteexpensive. The algorithms of Lindstrom and Bates (1988) are �nely tuned for the univariatemodel, but they do not generalize easily to the multivariate case unless we assume that 	has a special patterned structure, 	 = � 
 � for some q � q matrix �. This structure,which forces the correlation matrices for the r columns of bi to be identical, seems quiteunrealistic in many situations. Consider, for example, a linear growth model in which theslopes and intercepts for each variable Y1; : : : ; Yr vary by subject. The correlation betweenthe slope and intercept of any variable Yj expresses the degree to which individuals withhigh initial values of Yj tend to also have high rates of growth for Yj; there may be noa priori reason to believe that these tendencies should be identical, especially when thevariables Y1; : : : ; Yr are very di�erent in nature.Simpler methods for ML and RML estimation are based on variants of the EM algo-rithm. EM relies on the fact that if the random e�ects B = (bV1 ; : : : ; bVm)T were seen, thelikelihood function would factor into distinct likelihoods for 	 and (�;�),L(� j Y;B) = L(	 j B)L(�;� j Y;B); (4)each of which can be maximized quickly without iteration. EM algorithms tend to be quitestable but may converge very slowly; in many problems, hundreds or even thousands ofiterations are required. EM-type algorithms for ML and RML estimation in the univariatecase were given by Laird and Ware (1982) and Laird, Lange, and Stram (1987). As pointedout by Jennrich and Schluchter (1986) and Liu and Rubin (1995), many variants of EM arepossible in the univariate case; not all of these generalize easily to the multivariate case.The key feature of EM is that at each iteration, the su�cient statistics in (4) pertainingto B must be replaced by their conditional expectations given Y and the current estimate6



of �. In the multivariate model, the pairs (yi; bi) are distributed according toy Vi j bi; � � N( (Xi� + Zibi)V ; (�
 Ini) ); (5)b Vi j � � N(0;	); (6)independently for i = 1; : : : ; m. It follows from Bayes's Theorem that b Vi j yi; � �N(~b Vi ;�i), where ~b Vi = �i (��1 
 ZTi ) (yi �Xi�)V ; (7)�i = (	�1 + (��1 
 ZTi Zi) )�1: (8)Calculating �i by (8) requires inversion of rq � rq matrices and is the preferred methodin most cases where q < ni. The su�cient statistics for B required by EM are linear inthe elements of B and BTB, whose expectations are ~B = (~b V1 ; : : : ;~b Vm )T and Pmi=1(�i +~b Vi (~b Vi )T ), respectively.Now consider what happens when portions of Y = (y1; : : : ; ym) are ignorably missing.Let yi(obs) and yi(mis) denote the observed and missing parts of yi, respectively, and letYobs = fyi(obs)g and Ymis = fyi(mis)g. The simplest EM-type algorithms for ML and RMLestimation still rely on the factorization (4). At each iteration, however, one must now �ndthe conditional expectation given Yobs of su�cient statistics that are linear and quadraticfunctions of bi and yi(mis). From (5){(6) we see that y Vi and bVi are jointly normal withcovariance matrix 24 (Ir 
 Zi)	(Ir 
 Zi)T + (�
 Ini) (Ir 
 Zi)		(Ir 
 Zi)T 	 35 : (9)To �nd the expectations necessary for EM, one would have to repeatedly apply a sweepoperator or similar orthogonalization method to these matrices of dimension (rq + rni) �(rq+ rni) for i = 1; : : : ; m. Without imposing further structure (e.g. equality of the Zi) onthe model, the computations for even the simplest variants of EM can thus be exceedinglyexpensive. 7



3 Inference by multiple imputationIn typical applications, many of the parameters in this multivariate model are a nuisance,and obtaining quality estimates of every component of � is not of high priority. Rather thanattempting direct likelihood-based inferences about �, let us consider inference by multipleimputation. In multiple imputation, one must generate k independent draws Y (1)mis ; : : : ; Y (k)from a posterior predictive distribution of the missing data,P (Ymis j Yobs) = Z P (Ymis j Yobs ; �)P (� j Yobs) d�; (10)where P (� j Yobs) is proportional to the product of the observed-data likelihood functionP (� j Yobs) = Z L(� j Y ) dYmisand a prior density function �(�). After imputation, the resulting k versions of the completedata are separately analyzed using complete-data methods, and the results are combinedto obtain inferences that e�ectively incorporate uncertainty due to missing data. As shownby Rubin (1987), quality inferences can often be obtained with a very small number (e.g.k = 5) of imputations. Methods for combining the results of the complete-data analysesare reviewed by Schafer (1996).Except in trivial situations, the posterior predictive distribution (10) cannot be simu-lated directly. It is possible, however, to create random draws of Ymis from P (Ymis j Yobs)using techniques of Markov chain Monte Carlo (MCMC). In MCMC, one generates a se-quence of dependent random variates whose distribution converges to the desired target.Overviews of MCMC methods are given by Gelfand and Smith (1990); Smith and Roberts(1993); Tanner (1993); and in the chapters of Gilks, Richardson, and Spiegelhalter (1996).Applications of MCMC to univariate linear mixed models have been made by a number ofauthors, including Gelfand et al. (1990); Zeger and Karim (1991); Liu and Rubin (1995);and Carlin (1996). Like EM, these MCMC methods rely simpli�cations to the likelihood8



that result when the random e�ects are assumed known. Unlike EM, however, MCMC al-lows us to circumvent manipulations on the large matrices (9) by alternately conditioningon simulated values of the random e�ects and the missing data.In a slight abuse of notation, let A� � P (A) denote simulation of a random variate A�from a distribution or density function P (A). Consider an iterative simulation algorithm inwhich the current version of the unknown parameter �(t) = (�(t);�(t);	(t)) and the missingdata Y (t)mis are updated in three steps:b(t+1)i � P (bi j Yobs ; Y (t)mis ; �(t)); i = 1; : : : ; m; (11)�(t+1) � P (� j Yobs ; Y (t)mis ; B(t+1)); (12)y(t+1)i(mis) � P (yi(mis) j Yobs ; B(t+1); �(t+1)) i = 1; : : : ; m: (13)Given starting values �(0) and Y (0)mis , these three steps de�ne a Gibbs sampler in which thesequences f�(t)g and fY (t)misg converge in distribution to P (� j Yobs) and P (Ymis j Yobs),respectively.This is not the only Gibbs sampler that could be implemented for this problem; asnoted by Liu and Rubin (1995) in the univariate case, a wide variety of alternative MCMCalgorithms are possible. If any of the steps (11){(13) could be carried out without con-ditioning on simulated values of Ymis or B then the algorithm could be made to convergemore quickly. De-conditioning may greatly increase the computational cost per iteration,however, and some limited experience suggests that the additional e�ort required to do sois usually not worthwhile. The three-step algorithm (11){(13) is actually among the slowestto converge in terms of number of iterations required, but iterations can be executed on acomputer quickly provided that su�cient physical memory is available to store Yobs , Y (t)mis ,and the covariate matrices Xi and Zi. If the algorithm is believed to have converged tostationarity by T cycles, then k imputations of Ymis can be generated in kT cycles. Conver-gence can be informally assessed by examining the time-series plots, autocorrelations, etc.for functions of �(t). Formal and informal convergence diagnostics for MCMC are discussed9



by Schafer (1996) and in the chapters of Gilks, Richardson, and Spiegelhalter (1996).Implementation of (11){(13) requires us to specify a prior distribution for �. It is knownthat in mixed-e�ects models, improper prior distributions for the covariance componentsmay lead to Gibbs samplers that do not converge to proper posteriors, even though eachstep of the cycle is well-de�ned. For this reason, proper prior distributions for the covariancematrices are highly recommended. For simplicity, let us apply independent inverse-Wishartdistributions ��1 � W (�1;�1) and 	�1 � W (�2;�2), where W (�;�) denotes a Wishartwith � > 0 degrees of freedom and mean �� > 0. These priors are proper providedthat �1 � r and �2 � qr. In choosing values for the hyperparameters, it is helpful toregard ��11 ��11 and ��12 ��12 as prior guesses for � and 	 with con�dence based on �1 and�2 degrees of freedom, respectively. Small values for �1 and �2 make the prior densitiesrelatively di�use, reducing their impact on the �nal inferences. For �, we use an improperuniform density over Rpr.Under these priors, deriving each of the distributions in (11){(13) becomes a straight-forward application of classical Bayesian methods. The random e�ects bi in (11) are drawnfrom multivariate normal distributions with means and covariances calculated as in (7){(8).Simulation of � in (12) proceeds as follows: First, draw 	�1 from a Wishart distributionwith parameters � 02 = �2 +m and �02 = (��12 + BTB)�1, respectively. Next, calculate theordinary least-squares coe�cients�̂ =  mXi=1XTi Xi!�1  mXi=1XTi (yi � Zibi)!and residuals "̂ = yi �Xi�̂ �Zibi, and draw ��1 from a Wishart distribution with degreesof freedom � 01 = �1�p+Pmi=1 ni and scale matrix �01 = ���11 +Pmi=1 "̂Ti "̂i��1. Finally, draw� from a multivariate normal distribution centered at �̂ with covariance matrix � 
 V ,where V = �Pmi=1XTi Xi��1. For simulating �, it is helpful to note that if G and H areupper-triangular square roots of � and V , respectively (GTG = � and HTH = V ), thenG
H is an upper-triangular square root of �
 V .10



To carry out the �nal step (13) of the Gibbs sampler, notice that the rows of "i = yi �Xi��Zibi are independent and normally distributed with mean zero and covariance matrix�. Therefore, in any row of "i, the missing elements have an intercept-free multivariatenormal regression on the observed elements; the slopes and residual covariances for thisregression can be quickly calculated by inverting the square submatrix of � correspondingto the observed variables. Drawing the missing elements in "i from these regressions andadding them to the corresponding elements of Xi�+Zibi completes the simulation of yi(mis).The convergence behavior of this algorithm is governed by two factors: the amount ofinformation about � carried in Ymis relative to Yobs ; and the degree to which the randome�ects bi can be estimated from the yi. If the missing portions of Y exert high leverage overcomponents of �, or if the bi are poorly estimated (i.e. if the within-unit precision matrices��1 
 ZTi Zi tend to be small relative to  �1), then convergence can be slow. Notice thatany row of yi that is completely missing may be omitted from consideration, along with thecorresponding rows of Xi and Zi, without changing the form of the complete-data model(1). Ignoring these rows will eliminate unnecessary computation at each cycle and reducethe rate of missing information, speeding the overall convergence. These rows of data maybe restored at the �nal imputation step (13) to produce a fully completed dataset.This Gibbs sampler has been implemented by the author in Fortran-77 as a functionwithin the statistical languages S and Splus (Becker, Chambers, and Wilks, 1988). Asequence of T � 1 Gibbs cycles is performed with a single Fortran call; the functionreturns the �nal imputed dataset (Yobs ; Y (T )mis ) and the history �(1); : : : ; �(T ) of parameteriterates. Starting values for � and Ymis may be supplied, or the function may be allowed tochoose its own starting value. Source code and documentation for this function will soon beavailable at the S archive in Statlib, the statistical software distribution service located atCarnegie Mellon University (http://lib.stat.cmu.edu/S/). The package will be calledipan, for imputation of multivariate panel data.11



Table 1: Missingness rates (%) by gradeGrade5 6 7 8 9 10DRINKING 2 24 24 33 35 44POSCON 47 55 62 100 66 63NEGCON 48 56 62 100 100 1004 Application: Adolescent Alcohol Prevention TrialData for this example were drawn from the Adolescent Alcohol Prevention Trial, a longi-tudinal school-based intervention study of substance use in the Los Angeles area (Hansenand Graham, 1991). Attitudes and behaviors pertaining to the use of alcohol, tobacco,and marijuana were measured by self-report questionnaires administered yearly in grades5{10. The data exhibit typical rates of uncontrolled nonresponse due to absenteeism, at-trition, etc. which we will assume to be ignorable; this assumption has been given carefulconsideration and is not entirely implausible (Graham, Hofer, and Piccinin, 1994). In ad-dition, large amounts of truly ignorably missing data arose by design, because each studentreceived only a subset of the attitudinal items in any year; in some years, certain atti-tudinal questions were omitted entirely. For the present analysis, we examined a cohortof m = 3; 574 children and focused attention on three variables: DRINKING, a compositemeasure of self-reported alcohol use; POSCON, the perceived positive consequences of alcoholuse; and NEGCON, the perceived negative consequences of use. DRINKING appeared on thequestionnaire every year, whereas POSCON was omitted in grade 8 and NEGCON was omittedin grades 8{10. Missingness rates for the three variables by grade are shown in Table 1;observed means and standard deviations appear in Table 2.An analysis was performed to assess the possible inuences of POSCON and NEGCON onDRINKING. In this analysis, missing responses were imputed under a multivariate lineargrowth model with random slopes and intercepts for each of the r = 3 variables, plus �xede�ects for gender on both the slope and intercept. Each Xi matrix had p = 4 columns12



Table 2: Means (standard deviations) of observed variablesby grade Grade5 6 7 8 9 10DRINKING �1:43 �1:12 �0:57 0:09 1:29 1:97(1.33) (1.96) (2.73) (3.47) (4.40) (4.78)POSCON 1.30 1.34 1.48 | 1.84 1.96(0.61) (0.62) (0.74) | (0.89) (0.91)NEGCON 2.94 3.05 3.07 | | |(0.76) (0.75) (0.77) | | |corresponding to an intercept, grade, gender, and gender � grade; and each Zi had q = 2columns corresponding to intercept and grade. Notice from Table 2 that both the averagelevel of DRINKING and its variation increase dramatically over time. To make the assumptionof a constant residual covariance matrix � more plausible, alcohol use was re-expressed asthe logarithm of (DRINKING+5). Because NEGCON is entirely missing for the last three yearsof the study, the likely values of this variable for grades 8{10 are being inferred from twosources: extrapolation from grades 5{7 based on the assumption of linear growth, and theresidual covariances among the three response variables which are assumed to be constantacross time. Neither of these assumptions can be e�ectively tested from the data at hand,so inferences pertaining to NEGCON are heavily model-based.Due to the high rates of missing information, it was anticipated that the Gibbs samplerwould converge slowly. To assess convergence, the algorithm was run for an initial 2,000cycles under a very mild prior with �1 = 3, ��11 = 3I, �2 = 6, ��12 = 6I. Time-series plotsand sample autocorrelations for the components of � were then examined. As anticipated,the elements of 	 pertaining to the slopes and intercepts of NEGCON were among the slowestto converge because of the extreme sensitivity of these parameters to missing data. Based onthis exploratory run, it appeared that several hundred cycles might be su�cient to achieveapproximate stationarity. The Gibbs sampler was then run for an additional 9,000 cycles,13



with the simulated value of Ymis stored at cycles 2,000, 3,000, . . . , 11,000. Autocorrelationsestimated from cycles 1,001{11,000 veri�ed that the dependence in all components of � hadindeed died down by lag 200, so the ten stored imputations could be reasonably regardedas independent draws from P (Ymis j Yobs). Each 1,000 cycles required approximately 17minutes on a Sun UltraSPARC-1 workstation, approximately one cycle per second.After imputation, the data were analyzed by a conventional linear growth-curve modelfor the logarithm of (DRINKING + 5). The model was a version of (3) with �xed e�ects forgender, grade, gender � grade, POSCON and NEGCON, plus random intercepts and slopes forgrade. ML estimates were computed for each imputed dataset using an ECME algorithm,an extension of EM described by Liu and Rubin (1994). In this version of ECME, theparameters were partitioned as � = (�1; �2) where �1 = (�; �2) and �2 = 	=�2 (here �2denotes the univariate version of �). Each cycle of ECME consisted of (a) an E-step, inwhich the conditional expectations of B = (b1; : : : ; bm)T and BTB given Y were calculatedunder the current value of �; (b) a constrained maximization of the expected loglikelihoodfor �2 given the previous estimate of �1, in which B = (b1; : : : ; bm)T and BTB are replacedby their expectations; and (c) a constrained maximization of the actual loglikelihood for �1given the updated estimate of �2. The updating formulas areV (t)i = ��(t)2 �1 + ZTi Zi��1 ;~b(t)i = V (t)i ZTi ( yi �Xi�(t) );W (t)i = Ini � ZiV (t)i ZTi ;�(t+1)2 = 1m�2(t) mXi=1 �~b(t)i ~b(t)i T + V (t)i � ;�(t+1) =  mXi=1XTi W (t)i Xi!�1  mXi=1XTi W (t)i yi! ;�2(t+1) = N�1 mXi=1(yi �Xi�(t+1))TW (t)i (yi �Xi�(t+1));where N = Pmi=1 ni. This simple algorithm, which does not seem to have appeared beforein the literature, ran slightly faster than any of the three ECME algorithms described by14



Table 3: Estimated coe�cients, standard errors, degreesof freedom and percent missing information from multiply-imputed growth-curve analysisest. SE df % missingintercept �2.572 0.084 19 71grade (1=5th, . . . , 6=10th) 0.386 0.011 35 53sex (0=female, 1=male) 0.370 0.046 324 17sex � grade �0.105 0.013 88 33POSCON 0.549 0.023 17 76NEGCON �0.090 0.023 15 80Liu and Rubin (1995) on this dataset and several others. Another virtue of this algorithmis that the value of the actual loglikelihood function at each iteration is available essentiallyno cost. Except for additive constants, the loglikelihood can be shown to bel(�(t) j Y ) = � N2 log �2(t) � m2 log j�(t)2 j + 12 mXi=1 log jV (t)i j ; (14)and the determinants in (14) can be obtained as byproducts of the inversions required forV (t)i .Using this algorithm, ML estimates were quickly obtained from the ten imputed datasets;convergence of the parameters to four signi�cant �gures required an average of just 36iterations. Standard errors for the �xed e�ects were obtained from the �nal value of�2(Pmi=1XTi WiXi)�1. The ten sets of �xed-e�ects estimates and their standard errors werethen combined using Rubin's (1987) rules for multiple-imputation inference for scalar es-timands; these and other rules for combining multiply-imputed analyses are reviewed bySchafer (1996). Results of this procedure are summarized in Table 3. The point estimatesare simply the averages of the ML estimates across the ten imputations. The standarderrors incorporate uncertainty due to missing data as well as ordinary sampling variability.The degrees of freedom shown are the estimated degrees of freedom appropriate for hy-pothesis tests and interval estimates based on a Student's t-approximation. All coe�cientsare highly statistically signi�cant.Table 3 also shows the estimated percentage of missing information for each estimand as15



derived by Rubin (1987). The high rates of missing information indicate that the inferencesfor all coe�cients (except sex) may be highly dependent upon the form of the imputationmodel and the assumption of ignorable nonresponse. The latter assumption is not particu-larly troubling for these data, because the majority of missing values are missing by design.Certain assumptions of the imputation model, however|in particular, the assumed lineargrowth for NEGCON and constancy of the residual covariances across time|are not reallytestable from the observed data, so results from this analysis should be interpreted withcaution.Despite these caveats, the estimates in Table 3 provide some intriguing and plausibleinterpretations about the behavior of this cohort. The positive coe�cient for sex indicatesthat boys reported higher average rates of alcohol use than girls in the initial years of thestudy. The negative e�ect for sex � grade, however, shows that girls exhibit higher rates ofincrease than boys, so that the girls' average overtakes the boys' by grade 8. The large pos-itive e�ect of POSCON indicates that increasing perceptions about the positive consequencesof alcohol use are highly associated with increasing levels of reported use. The negativecoe�cient for NEGCON suggests that increasing beliefs about negative consequences do tendto reduce levels of use, but the e�ect is much smaller than that of POSCON. These results areconsistent with those of previous studies (MacKinnon et al., 1991) which demonstrated thatperceived positive consequences may be inuential determinants of substance-use behavior,but beliefs about negative consequences have little or no discernible e�ect.5 Discussion and extensionsThe multivariate mixed model (1) is a natural extension of the simple univariate model (3)which has been quite popular in the analysis of longitudinal data. The imputation proce-dures described in Section 3 are appropriate for longitudinal analyses with partially missingcovariates, when those covariates are going to be incorporated into an analytic model as16



�xed e�ects. These methods are also appropriate for multivariate cross-sectional studieswhere units are nested within naturally occurring groups (e.g. children within schools). Thealgorithm and software described in this article provide a principled solution to missing-dataproblems for this somewhat limited but important class of analyses.The imputation model and Gibbs sampler can be extended in a number of importantways. The use of an unstructured covariance matrix 	 for the random e�ects may belimiting in situations where some aspects of 	 may be poorly estimated|for example, inmultivariate cluster samples with many variables, many units per cluster, but relatively fewclusters. A more parsimonious block-diagonal structure, which assumes that the randome�ects pertaining to the r response variables are independent, can be handled easily. Undera block-diagonal structure, the likelihood function in (4) pertaining to 	 factors into rdistinct likelihoods for the diagonal blocks, so a Gibbs sampler can draw these blocksindependently. Another extension which can be easily implemented pertains to linearmodels with additional random e�ects due to higher levels of clustering; this would arise,for example, in multivariate studies where individuals are grouped into larger units andmultiple observations on individuals are taken over time. Both of these features will beincorporated into future versions of the software.We are currently investigating a number of additional extensions the model. The �rstextension pertains to columns of yi that are necessarily constant across the rows 1; : : : ; ni.In longitudinal studies, these columns would represent covariates that do not vary over time;in clustered applications, they would represent characteristics of the clusters rather thanthe units nested with them. If these covariates have no missing values, they can be handledunder the current model by simply moving them to the matrix Xi. When missing valuesare present, however, they must be explicitly modeled for purposes of imputation. If weare willing to impose a simple parametric distribution on these covariates (e.g. multivariatenormal), then it will be straightforward to extend the Gibbs sampling procedure to impute17



these as well.Another useful extension involves interactions among the columns of yi. The multi-variate normal model allows only simple linear associations among the variables Y1; : : : ; Yr,but in many studies one would like to preserve and detect certain nonlinear associationsand interactions. In the data example of Section 4, for example, it may have been usefulto see whether the strong e�ect of POSCON on DRINKING may have been increasing or de-creasing over time; the imputation model, however, imputed the missing values under anassumption of a constant POSCON � DRINKING association. Extensions of the multivariatemodel to allow more elaborate �xed associations such as POSCON � DRINKING � grade, orrandom associations such as POSCON � DRINKING � subject, are an important topic forfuture research.Finally, it will be important to extend the imputation procedures to include time-varying responses that are categorical. Under the current procedure, ordinal responses canbe handled in an ad hoc fashion, imputing under a normal model and rounding o� the resultsto the nearest category. Some evidence suggests that ad hoc rounding procedures oftenwork well in practice (Schafer, 1996). In other situations, however, a normal model will beclearly unacceptable|for example, with nominal (unordered) responses or binary variablesthat are heavily skewed. Imputation methods for multivariate datasets with continuousand/or categorical variables (Schafer, 1996) should be extended to include random e�ectsthat arise from longitudinal or clustered structure.In the current model the rows of each response matrix yi are assumed to be condition-ally independent given bi with common covariance matrix �. This assumption has beenrelaxed by Jennrich and Schluchter (1986), Lindstrom and Bates (1988), and others inthe univariate case to allow a residual covariance matrix of the form �2Vi, where Vi hasa simple (e.g. autoregressive or banded) pattern dependent upon one or more unknownparameters. Sensible multivariate extensions of these patterned covariance structures to a18



tends to produce models and algorithms that are complex even apart from missing data.For example, the obvious extension of �Vi � N(0; (�
 Ini) ) to �Vi � N(0; (�
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