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Genetic Dissection of Complex Traits In Silico: Approaches, Problems and
SQlutions
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Abstract: The genome projects in human and other species have made genetic data widely available and pose challenges
as well as opportunities for statistical analysis. In this paper we elaborate the concept of integrated analysis of genetic data,
such that most aspects of analyses can be done effectively and efficiently in environments with facility for database
accessibility, graphics, mathematical/statistical routines, flexible programm ing language, re-use of available codes,
Internet connectivity and availability. This extends an earlier discussion on software consolidation (Guo and Lange. Theor
Pop Bio! 57:1-1 I, 2000). A general context is laid out by recollecting the research paradigms for genetic mapping of
complex traits and illustrated with the study of ageing, before turning to the computational tools currently used. We show
that the R system (http://www.r-project.org) so far is the most comprehensive and widely available system. However,
other commercial systems can potentially be successful. In particular, we compare SAS (http://www.sas.com). Stata
(http://www.stata.com), S-PLUS (http://www.insightful.com) and give some indications of future development. Our
investigation has important implications for both statisticians end other researchers actively engaged in analysis of genetic
data.
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1. INTRODUCTION

With successful mapping and localisation of susceptible
genes for Mendelian diseases such as Huntington's disease
[1 J, cystic fibrosis [2] and some form of non-Mendelian
diseases such as breast cancer [3], much of the current
research in human genetics is focused on common diseases
including asthma, cardiovascular diseases, diabetes, and
psychiatric disorders, among others. The difficulty with
these "comp lex traits" has provoked the close scrutiny of
various aspects of research [4, 5J which involves study
design, statistical analysis, and gene-environment interaction.
To a large extent, methods underpinning these efforts have
been the subject of active research by mathematicians and
statisticians over a century. However, never than before are
they under increasing challenges, predominantly due to the
fact that the genetic mechanisms for common diseases in
relation to environment are much more complicated and not
well-understood. Th is understand ing calls for better"
knowledge of human demographic history, biological
pathways and physiological functions, which relies on whole
genomics data as well as large collections of biological and
environmental covariates. The international Hap Map project
[6, 7] is one example for study of patterns of common DNA
variations [8-10] across the genome using millions of single
nucleotide polymorph isms (SNPs) [11], which are the most
abundant form of genetic variation and accounts for about
90% of human DNA polymorphism. Studies of SNPs over
large genomic regions therefore hold great promise for
mapping polygen ic disease loci, as has been demonstrated
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[12]. They can further shed light on human history including
relationships between ethn ic groups, migrations, together
with evolutionary information such as genetic drift, selection,
mutation, and recombination at the molecular level. The
explanation of the frequency and distribution of these SNPs
throughout the genome has thus been regarded as a central
challenge [12, 13]. The recognition of the need for
population studies results in effort on a national level such as
UK Biobank initiative (http://www.ukbiobank.ac.uk) and
similar projects envisaged elsewhere [14]. These projects
represent in itiatives to collect a large array of genetic and
environmental factors and will likely be longitudinal. Apart
from human genome project, many "-omics" projects are
carried out and paralleled in other species. Additional
account of the: genetic databases is available on the first issue
of Nucleic Acids Research each year. Greater complexity
implicit in the data also calls for more sophisticated
modelling. Data mining and modelling of socio-biological
pathways while accounting for socio-historical events are
likely to be ubiquitous. Therefore further data fusion is
expected.

The annotation of the large genomic data currently is an
unwieldy task. For instance, genome-wide association
studies involving several thousand individuals each with tens
of thousands of SNPs have been planned or carried out for
most.common diseases [15]. This would thwart most of the
traditional analytical tools currently in use. Not only is
greater computing power needed, but classic theories such as
those for multiple testing need to be re-examined. While
many researchers continue struggling with an increasing and
bewildering number of computer programs for their study
design, analysis and reporting, as shown in several recent
reviews [16-20], there is an urgent need for concerted effort
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to produce software systems for analysis of genetic data.
Earlier, it was indicated that "Many statistical geneticists
sense that the time is ripe for software consolidation. A
critical mass of users to support commercialization is now in
place, particularly with the entry of the pharmaceutical
industry into genetic epidemiology. The problem is that no
one is sure how to achieve software consolidation. Most
statisticians have their pet methods, which they are loath to
give up. Nonetheless, there are some clear demands that wilt
drive the process of software development. Among the
obvious needs are (I) a professional-looking graphical user
interface, (2) integration of genetic databases and analysis
programs, (3) integration of visual display of pedigree data
with analysis output, (4) better analysis tools for screening
pedigree data for genotyping errors, (5) automatic choice of
the quickest algorithms for likelihood evaluation, and (6)
flexible programs that allow sophisticated users to pursue
novel models and variations on existing models" [21].

We feel two points are outstanding, which are a clear
correspondence between research parad igm of genetic
investigation and the analytical or computing machinery, and
the need from end users for software consolidation. There
have been a lot of discussions on the statistical methodology
(e.g., [22-30]) but relatively few on computing tools. An
attempt was made on integrated analysis of genetic data
using the R system (http://www.r-project.org) [31]. and we
will elaborate related software systems and issues discussed
there. We remain our focus on the problems and prospect of
data analytic practice on human genetics, particularly on
genetic epidemiology. In the discussion we will give some
indication as to how integrated systems for genetic data
could be developed,

2. APPROACHES TO GENETICS OF COMPLEX
TRAITS

No universal definition of complex trait exists, which
broadly refers to any phenotype that does not exhibit classic
Mendelian recessive or dominant inheritance attributable to a
single gene locus [22], Examples are susceptibilities td
asthma, cardiovascular diseases, diabetes, cancer, infection
and psychiatric disorders. The lack of simple genotype-
phenotype relationship lies not only in complexities of
physiology and population but also the environment. These
complexities can lead to a number of specific phenomena
including polygenic inheritance, locus hetero~neity,
epistasis or gene-gene interaction, environmental
vulnerability, gene-environment interactions, development or
time-dependent expression of genes, general aging of the
system [4, 32]. Other characteristics of complex trait have
been documented, e.g., birth order and cohort effects, late or
variable age of onset, and variable disease progression,
Many complex diseases are hard to diagnose accurately or
with measurement errors for quantitative traits [33]. There is
also limited statistical power to detect genes that are
involved [24, 34]. The study of the genetic predisposition
underlying these diseases has been the central theme for
genetic epidemiology [35-41]. "the study of the joint action
of genes and environmental factors in causing disease in
human population and their patterns of inheritance in
families" [28] or similarly "a science that deals with the
aetiology, distribution and control of disease in groups of
relatives and with inherited causes of disease in
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population... genetic epidemiology should be broadly
defined to embrace all aspects of population genetics except
evolution, including phenotypes, gene-environmental
interactions, and modes of transmission related to health or
to location of disease genes, or requiring methods of
analysis developed for genetic determinants of disease ..,
other disciplines are subsumed by this definition, including
ecogenetics, behaviour genetics, and demographic
genetics ... molecular epidemiology as it relates to inherited
risk factors is contained within genetic epidemiology" [39],
This is in contrast with general epidemiology studying the
distribution, determinants [and control] of health-related
states and events in population [41]. A recent account of the
analytic strategy is given in [42]. Traditional strategies to
assess the genetic influences of diseases include twin and
adoption studies to characterise the relative contributions of
genetic and environmental components, the study of familial
aggregation of diseases (e.g. path analysis [43]), the
modality and mode of inheritance of major gene (e.g. the
commingling [44] and segregation analyses (45]), linkage
[46-49] and association analysis [50-52]. Before the 1980s,
there were on Iy a limited number of genetic markers
availab Ie therefore restricting the scope of Iinkage and
association studies, only to be changed by the human
genome project. Currently, the mapping methods have been
classified into several categories, namely parametric LaD
score methods based on assumed disease models, variance
component methods for quantitative traits, allele-sharing
methods, association studies, construction of conserved
haplotypes and mapping via experimental species [33]. The
process of genetic epidemiology has recently reframed [41,
53-58] as with the following steps: descriptive epidemiology,
familial epidemiology, segregation analysis, linkage analysis,
fine mapping, association with candidate genes, cloning the
gene and identifying mutations, characterising the gene [28].
Note this encapsulates the commonly used candidate genes
and genome-screen approaches [4, 32, 59-6\ J, particularly
the so-called genome-wide association studies (15,62-64].

The genetic epidemio logy of human ageing and longevity
serves as an illustrative example and is sketched elsewhere
[65]. The lifespan familial correlation was described in 1899
[66] and continued to be examined from then on. Data from
well-defined populations support the notion that there exist
transmittable familial attributes, which are partly genetic,
affecting lifespan. A recent report suggested an exceptional
genetic inheritance due to a high concentration of long-lived
ancestors [67]. Twin studies were used to estimate the
genetic and environmental components to human survival,
and a large Danish twin study estimated that the genetic
component accounts for about 25% of the total lifespan
variation [68]. A further step following the confirmation of
genetic influence in lifespan is to look for the causal genetic
variants. The past few decades have witnessed extensive use
of genetic data (69]. The first genome-wide linkage analysis
on human exceptional longevity used sample of 137 families
with exceptional longevity [70] to identify a region on
chromosome 4 that could possibly harbor a gene affecting
human longevity. Among association studies using candidate
genes, the apolipoprotein E gene has given the most
reproducible and strongest association and its emerging
mechanisms in the etiology of heart disease, stroke and
Alzheimer's disease which are among the major threats to
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public health [71]. Furthermore, gene-expression studies
have also been carried out [65].

3. THE PRACTICAL DIFFICULTY OF GENETIC
DATA ANALYSIS

The practice of genetic epidemiology is greatly
influenced by advance in modern computing and molecular
biology. The range of analyses carried out by genetic
epidemiologist has largely been through successful uses of
many software programs. In the early I970s, this was
represented by algorithmic breakthrough in pedigree analysis
[72] and computer implementation [47]. In the early 1980s
most software programs were largely outlined in [73]. This
was followed by development in algorithm and software was
seen in the late 1980s [48, 49, 74], 1990s [75-82] and more
recently [83-85]. A current list of software programs for
genetic epidemiology is maintained at http://www.nslij-
genetics:org/soft/ and mirrored at http://linkage.rockefeller.
edu/soft/. References to most of the packages given below
can be found there and therefore omitted here. A somewhat
reduced set of programs from the former UK HGMP-RC
(Human Genome Mapping Project Resource Centre) is
freely available on LITBIO (http://www.litbio.org). Surveys
have been given of software on linkage analysis [16],
haplotype phase inference [l &], on tag SNPs [86], and
genetic power calculation [17]. A survey of programs for
haplotype analysis [19] contained 46 software programs. A
comparison of linkage analysis for quantitative trait [20]
includes LINKAGE, FASTLINK, PAP, SOLAR, SEGPATH,
ACT, Mx, MERLIN, GENEHUNTER, Loki, Mendel, SAGE,
QTDT and FBAT. These programs implement variance
components, Markov chain Monte Carlo (MCMC),
Haseman-Elston [87], penetrance model-based linkage
analyses, as well as measured genotype association analyses
and quantitative trait transmission disequilibrium tests
(TDTs).

While proved useful in specific applications, they are
also scattered and often hastily written. They were written in
many computer languages, ranging from C, C++, Fortran,
Pascal, Java, Perl to standard statistical packages; some of
which only available in compiled form and tested under
specific computer systems. They require data in specific
formats, often not conforming to any standard, and
cumbersome to reuse output from these programs. Some
include simple parsing and few have graphical facility. If!
analysis of large data, it is often necessary to write
customised utilities for these programs. The range of skills
required for different computer languages and tools largely
requires a computer professional. They often lead to
redundant work, poor maintenance, and lack of validity
checks. Further disadvantage of these packages is that they
were designed from the developers own experiences,
therefore require a variety of data format and difficult to
adapt by other users. They are often platform-specific, and
require other programs for accessing database, for
elementary statistical computing and inference, for graphics,
and for Internet connectivity.

Attempts have been made to resolve these difficulties by
comprehensive implementation, e.g. SAGE (Statistical
Analysis for Genetic Epidemiology) [85], Mendel [74],
MORGAN (Monte Carlo Genetic Analysis), PAP (Programs
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for Pedigree analysis) [88] are all quite comprehensive.
Packages for population genetic analyses of molecular data
[&9] include GENEPOP (http://wbiomed.curtin.edu.au/
genepopl), GDA (Genetic Data Analysis) [90], Arlequin [91]
and POPG ENE (http://www.ualberta.ca/-fyehl). However,
most have their limitations, and many aforementioned
problems remain. It is even more difficult to adapt these
programs.

4. THE EMERGING ALTERNATIVES

Recently, components of genetic data begin to appear on
commercial packages to various degrees, including SAS
(http://www.sas.com), Stata (http://www.stata.com), S-PLUS
(http://www.insightful.com) and Genstat (http://www.vsn-
intl.com/genstatl). A non-commercial alternative is the GNU
(http://www.gnu.org) version of S-PLUS called R [92]
(http://www.r-project.org), available on Unix/Linux,
Windows, MacOS X and a number of other computer
systems. The R system can be considered as part of the open
source initiative (http://www.opensource.org), which
includes operating system (e.g. Linux), software (e.g.
Apache server, Fortran/C/C++ compilers), database
management system (e.g. MySQL, http://www.mysql.com.
and Oracle, http://www.oracle.com) and scripting languages
(e.g. Perl, http://www.perl.org), all freely available. These
systems all have comprehensive procedures for statistical
data analysis, professional graphic user interfaces and ability
to access database directly or through open database
connectivity (ODBC). It is possible to call commands in the
host computer system via system or shell from these
packages, making it possible to run stand-alone programs
and retrieve their output. It is possib Ie to call programs in
C/C++/Fortran, through SAS/TOOKIT in SAS, .Call/.Inter-
nal/.C/.Fortran in R but not possible with Stata. We give a
brief summary of these systems below, with the main
features of these software systems highlighted in Table 1. As
it would be unrealistic to illustrate many features of these
packages, we only illustrate their use of large dataset in the
wake of whole-genome association studies. The example
dataset is downloaded from the HapMap website in ASCII
format, converted to Excel and Access, and uploaded to a
MySQL server through ODBC. It is stored as a table named
Genotypes _ chr I 1_CEU in a MySQL database called test.

4.1. SAS

It has been one of the most powerful statistical systems
available and consists of many modules. Briefly, SAS/BASE
offers many procedures for data management including
PROC SQL, while SAS/STAT provides procedure for most
statistical analysj~ and SAS/GRAPH for computer graphics.
Furthermore, SAS/IML provides an interactive matrix
language, mathematical and statistical procedures which
would be appropriate for statistical mode IIing. Other
modules include SAS/ASSIST, SAS/ETS, SAS/GIS,
SAS/OR, SAS/QC for menu-driven directive, econometric
time-series analysis and forecasting, geographic information
system, operations research, and industrial process control.
Finally, SAS/ACCESS, SAS/SHARE, SAS/CONNECT
have facility for database access and connection between
software systems. While over years many macros have been
written for genetic analysis, a recent synthesis is available
through its new SAS/GENETICS module, which contains
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the following procedures for genetic association analysis:
ALLELE, HAPLOTYPE, CASECONTROL, HTSNP,
FAMILY, INBREED, PSMOOTH. These procedures cover
analysis ranging from summary statistics to analysis of
population and family data. Procedures in SAS/STA T
include MUL lTEST for multiple testing and GLMM for
generalised linear mixed modelling.

We now use an example from a collaborative study of the
linkage disequilibrium in eleven population isolates, a
dataset of 100 family trios on chromosome 22. We wish to
examine if there is evidence of transmission distortion on a
sample from Antioquia, Colombia. There were 2696 SNPs
genotyped in the dataset, organised by individual ID, SNP
number and their alleles. This could be done with TDT
implemented in the PROC FAMILY. The test is furnished
with the following program.

The program starts by reading an ASCII-formatted file
ant.txt containing marker names and alleles, and preparing
the IDs for later analysis. This is followed by descriptive
analysis using PROC ALLELE for marker and genotype
frequencies, Hardy-Weinberg equilibrium tests. As there are
many markers involved, we resort to the output delivery
system (ODS) facility to keep marker information including
allele and genotype frequencies as datasets for other
purposes. Later, PROC FAMILY indicates Mendelian
inconsistencies of genotypes in the data. The p values were
obtained according to the so-called reconstruction TDT [93]
and passed to PROC MUL TTEST to calcu late the
Hochberg's [94] and Benjamini and Hochberg's step-up
methods for p-value adjustments [95]. Other options such as
SDT [96] and STDT [97] are possible and can be combined
with COMBINE option. The permutation tests are also
possible with PERMS option. The results conform to a

/*to set up trio information*/
data ant;

infile 'ant.txt' firstobs=2 dlm=",";
attrib marker lenqth = $12.;
input eid$ antS markerS. al$ a2$;
pid=substr(eid,1,6);
id=substr(eid,8,1)+Oi
if id=3 then do; disease=2i fid=l; mid=2; sex=li end;
else dOi disease=l; fid=Oi mid=O;

if id=l then sex=li else sex=2i
endi

drop anti
run;
/*to sort data by marker order*/
proc sort data=anti

by marker;
runi
/*to perform marker-marker analysis*/
ods select none;
proc allele data=anti

ods output markersumm=ms
allelefreq=af genotypefreq=gfi

where id "=3i
by marker;
var a1 a2;

prefix=Marker rctdt outstat=Pi
perform TOTs*/
family data=ant
by marker;
id id fid mid;
var a1 a2i
trait disease / affected=2;

run;
ods select all;
proc print data=ms;
title Marker summary information;
proc print data=af;
title Allele frequencies;
proc print data=qfi
title Genotype frequencies;
runi
/*to
proc

run;
proc print data=p;
run;
/*distribution of p-va1ues*/
proc univariate data=p;

histogram probRCTDTi
run;
data p;

set p;
test=compress ('test' IIn) ;
rename probRCTOT=raw Pi

run;
/*to obtain adiusted p-va1ues*/
proc multtest pdata=p fdr hOCi
runi
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similar analysis through UNPHASED [98], but with much
simpler programming effort. Note for most standalone
programs for TDT, it is necessary to create a standard dataset
with records for all members in a trio even when some
members are unavailable due to lack of genotype data. The.
whole analysis would have been quite clumsy for basic
marker information and TDTs.

The following program shows how ODBC and MySQL
engines could be used to access table Genotypes_
chrll CEU.
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. describe using http://www.stata-
press.com/data/rB/clogitid.dta
. use http://www.stata-
press.com/data/rB/clogitid.dta

The first three commands obtain a description of
packages and install htSNP2. The remaining two commands
access the example data set for conditional logistic
regression from Stata's homepage. Amendments to any
command can be achieved with the Stata command adoedit.

libname test odbc datasrc=myodbc user=jhz22;
proc print data=test.Genotypes chrll_CEU;
run;
proc sql;

connect to odbc as test (datasrc=myodbc user=jhz22) i

select * from test.peti
libname test2 mysql database=test user=jhz22i
proc print data=test2.pet;
runi
proc sql;

connect to mysql as test2 (database=test user=jhz22);
select * from test2.peti

Several other packages are also available from Biostatistics
resources. e.g.,

net from http://www.biostat-resources.com/stata

for the Jist of packages including genhw, gencc, qtlsnp,
hwsnp, genecmt for Hardy-Weinberg equilibrium test, case-
control and case-parent-triad data analysis. etc. It is self-
evident how these packages are distributed from the authors'
websites.

The following is the Stata code to query the MySQL
database:

The MicroSoft Access database can be accessed directly
under Windows using IMPORT procedure,

%let dbname = c:\hapmap\dbl.mdbi
%let uid = XXXXi

%let pwd = *****;
%let wgdb = c:\hapmap\dbl.mdw;
proc import out = objects

datatable = "Genotypes_chrll CEU"
dbms = access97 replace;
database = "&dbname"i
userid = "&uid";
password = "&pwd";
wgdb = "&wgdb";

run;
4.2. Stata

. oc:lbclist
Data Source Name

myodbc
3.51 Driver

Driver

MySQL ODBC

It is fast becoming the most popular computer package
for epidemiologists, and favoured by researcher in other
fields such as econometrics [99]. It has facilities rangin~
from basic data management, computer graphid',
programming, to methods for complex survey, longitudinal
data analysis and multilevel models. Beside its simple but
flexible syntax and comprehensive on-line documentation, it
has many unique features such as frequency, probability and
analytic weights. Not surprisingly, there are efforts to
implement genetic analysis (e.g. http://www.cimr.cam.ac.uk
and biostatistics resources, http://www.biostat-resrouces.
com), though so far no corporate initiative is involved. To
show the ease to install Stata packages from the Internet, the
popular package by David Clayton for haplotype tagging
[100] can be downloaded as follows,

. net from http://www-
gene.cimr.cam.ac.uk/clayton/software/st
ata

net describe htSNP2
. net install htSNP2

. oc:lbcquery "myodbc"
DataSource: MySQL database
Path : jhz22

. oc:lbcdesc "Genotypes_chr4_HCB",
dialog (complete)
. set mem SOM
. oc:lbcload, exec("select * from
Genotypes _ chrll_ CEU")

The common approach for marker-trait association, the
so-called haplotype trend regression [121], is particularly
simp Ie with the pweight us ing constructed haplotypes from
any haplotype construction programs, e.g. logit cc locus'"
[pweight=probabilityl specifies a logistic regression model
of a binary outcome (cc) with haplotypes (Iocus*) weighted
by the posterior probabilities (probability).

http://www.biostat-resources.com/stata
http://www.cimr.cam.ac.uk
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Table 1. A summary of Main Features in the Four Environments (SAS, Stata, S-PLUS and R)
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Note. The analytic procedures range from numerical analysis and probability distributions to linear and oilier models in modem applied statistics. In SAS and S.PLUS some
procedures are available through additional module such as SASIOR for operations research, S.PLUS NuOPT and S+ArrayAnalyzer for numerical optimisation and microarray
analysis. In R, several packages are devoted to numerical optimisation and Markov chain Monte Carlo. SAS has established facility for graphic information system while S.PLUS
achieves this through Arcview. Stata is the only one without making full manuals available.lectronically.

4.3. S-PLUS

It is based on the S language [101] and designed for data
handling, analysis and graphics [102], with facility to handle
large dataset in its latest version. Its flexibility in graphics
lies in little effort to create and add items to plots with calls
to lines, polygon, etc, and to use toolbox containing many
functions. Collection of function and data is in the form of
package to be called with IibraryO command when
necessary. It also has S+ArrayAnalyzer for analysing
microarry data [103], Taqman analysis, and packages
haplo.stats [l04], kinship [105, 106], multic [107] and
multigene [l08],

Here is the S-PLUS code to access the MySQL database;
the current S-PLUS version 7 on Linux does not support
ODBC,

repository of packages is maintained at CRAN (Compre-
hensive R Archive Network, http://cran.r-project.org).
Packages serving on similar purpose can further be grouped
into CRAN task view (ctv). The number of procedures in R
is much larger than S-PLUS and most packages developed
for S-PLUS, including haplo.stats, kinship, multigene, are
already ported to R, Among many features, R offers
interface to databases such as MySQL and Oracle, MS
Access as well as spreadsheet such as MS Excel. The
package foreign is recommended as it has capability to
import data from dBase and Stata, or SAS when the SAS
system is available. R allows for graphic user interface be
developed using its TCL/Tk (http://www.tcl.tk) component -
--- an example is the Rcmdr package which implements a
menu-driven interface for many analyses in R, The R
package snow (Simple Networ:< of Workstations)

library("S-MySQL",lib.loc="/home/jhz22/S/library")
# initialize S-PLUS as a MySQL c~ient
mgr <- dbManager ("MySQL")
# create a connection to a MySQL server
con <- dbConnect(mgr, user="jhz22", dbname="test")
# run a query, leave results on the server
rs <- dbExec(con, "select * from Genotypes_chrll_CEU")
# fetch up to, say, 5 records
df <- fetch(rs, n = 5)
# close resultSet rs and connection con
close(rs)
close(con)

The S-MySQL library can be obtained from
http://stat.bell-labs,com/RS- DBI/down load/,

4.4.R
Like in S-PLUS, functions and datasets in R can be

organised as objects in specific packages. The large

implements a simple mechanism for using a workstation
cluster in R, The interface, which is based in part on the
Python CoW (Cluster of Workstations) package, is intended
to be quite simple, and is designed so that it can be
implemented on top of several different lower level
communication mechanisms. Three low level interfaces have

http://cran.r-project.org.
http://www.tcl.tk
http://stat.bell-labs,com/RS-
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been implemented, one based on sockets, one using PYM via
the rpvm package by Li and Rossini, and one using MPI, via
the Rmpi package by Hao Yu. An example of using the
cluster for parallel bootstrapping is given by Luke Tierney
(http://www.stat.uiowa.edu/-luke/RJcluster/c1uster.html) .

R packages are usually obtained using the download.
packagesO command but R programs are loadable directly
from the Internet using the sourceO command, e.g.
source(''http://wp icr.wpic.p itt.edu/WPI CCom pGen/genom ic
_control/gc.txt") for genomic control [109] and source
(••http://www.uib.no/sm is/gjessing/genetics/softw are/hap Iin/
HAPLIN.BETA.R.txt") for case-parent trio data [110, III].
The following is adapted from the CRAN task view on
several categories of genetic data analyses.

4.4.1. Population Genetics

Pac.kage genetics contains classes and methods for
representing genotype and haplotype data, with functions for
population genetic analysis such as estimation and testing of
Hardy-Weinberg and linkage disequilibria. Geneland has
functions for detecting spatial structures from genetic data
within a Bayesian framework via MCMC estimation.
Malmig implements Malecot migration model and related
functions. rmetasim provides an interface to the metasim
engine for population genetics simulations. hapsim simulates
haplotype data with pre-specified allele frequencies and
linkage disequilibrium (LO) patterns. A few population
genetics functions are also implemented in gap. hierfstat
allows the estimation of hierarchical F-statistics from
haploid or diploid genetic data. LOheatmap creates a heat
map plot of measures of pairwise LO using 0' or r. hwde fits
models for genotypic disequilibria. Biodem package
provides functions for biodemographical analysis, e.g. FstO
for Fst from the conditional kinship matrix. Package kinship
offers some functions kinshipO. ImekinO, and coxmeO for
analysis of survival data on large and extended pedigrees.

4.4.2. Phylogenetics

These include packages ape and apTreeshape for
handling of phylogenetic trees and evolution analysis.
Package. ouch provides Ornstein-Uhlenbeck models for
phylogenetic comparative hypotheses, while phyloarray
offers functions for phylogenetic microarray data processing.
PHYLOGR is a suite of functions for the analysis of
phylogenetically simulated data sets and model fitti~g.
stepwise implements a method for stepwise detection of
recombination breakpoints in sequence alignments.

4.4.3. Linkage, LD and Haplotype Mapping

Package gap contains functions for sample size
calculations, probability of familial disease aggregation,
kinship calculation, and some tests for linkage and
association analyses. Among the other functions,
genecountingO estimates haplotype frequencies from
genotype data with missing values and applicable for both
autosomal and X chromosome data. For family data, tdthap
offers an implementation of TOT for extended marker
haplotypes, whereas powerpkg performs power analyses for
the affected sib pair and the TOT design. The package
hapassoc performs likelihood inference of trait associations
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with haplotypes in generalised linear models. Package
haplo.stats implements association tests for a wide variety of
traits (e.g. binary, ordinal, quantitative, and Poisson). Its
functions haplo.emO provided maximum likelihood
estimation of haplotype probabilities and haplo.glmO for
modelling gene-environment interactions. All packages
above work when haplotype phase is uncertain. IdOesign is a
package for design of experiments for association studies for
detection of linkage disequilibrium.

4.4.4. QTL Mapping

They contain methods for the analysis of experimental
crosses to identify markers contributing to variation in
quantitative traits. Package bim is for Bayesian interval
mapping diagnostics. bqtl implement both likelihood-based
and Bayesian methods for inbred crosses and recombinant
inbred lines. qtl provides several functions and a data
structure for QTL mapping, including a function scanoneO
for genome-wide scans. The package qtlOesign has functions
for designing QTL experiments, includ ing power
computations.

4.4.5. Multiple Testing

The package qvalue implements false discovery rate via
function qvalucO [112], to be called either as a function or
from a graphic interface. Package multtest [113, 114] also
offers several non-parametric nootstrap and permutation
resampling-based .multiple testing procedures. There are
additional packages such as locfdr [115, 116], twilight [117].

Many packages have not gone through the formal check
by or submitted to CRAN, e.g. dgc.genetics (http://www-
gene.cimr.cam .ac.uk/clayton/softwarel), happy (http://www .
well.ox.ac.uk/happyl), hapgen and popgen (http://www.stats.
ox.ac.uk/-marchinil), migration (http://www.math.ntnu.no/
-jarlet/migrationl) [118] and multic [107]' Other packages
such as Bradley-Terry, epitools, evd, gllm, rmeta, vcd are
quite general but with functions for genetic data. Routines
for annotation of biological pathways [119, 120] in Rare
. also attractive. Further advantage of R is its collection of
packages for Bayesian data analysis, such as MCMCpack,
mcmc, coda, boa, and interface to Win BUGS (http://www.
mrc- bsu .cam .at .uk/bugs/we Icome.shtm J).

The following code shows loading MySQL directly and
MicroSoft Access databases through ODBe:

# MySQL
Hbrary(RMySQL)
m <- dbDriver ("MySQL")
con <- dbConnect (m,"tes t")
rs <- dbSendQuery(con,"select * from
Genotypes_chrll_CEU")
df <- fetch(rs,n=3)
# ODBC
library (RODBC)
c2 <- odbcConnectAccess ("dbl.mdb")
# select the table
tblOutput <- sqlQuery(c2,paste("select
* from Genotypes chrll CEU"))
# the property of tblOutput
class (tblOutput)

http://www.stat.uiowa.edu/-luke/RJcluster/c1uster.html
http://www.uib.no/sm
http://www.stats.
http://www.math.ntnu.no/


366 Current 8ioinformatics, 2006, VoL I, NO.3

5. DISCUSSION

To echo our earlier discussion, the large genomic data
pose immense challenges for inter-disciplinary research
between biologists, epidemiologists, mathematicians,
statisticians, computer scientists and even sociologists. In
particular, just as modern statistics is greatly influenced by
advances in computing technology, these challenges equally
mean opportunities. We feel a sensible strategy would be to
"integrate" genetic data analys is with "general-purpose"
software systems currently available. We have explored
several such systems for genetic data analysis. In accordance
with the rev iew by Guo and Lange [2\]. we note that these
indeed have some degree of commercialisation and together
with non-commercial systems such as R they started to
influence the practice of analysis. However, we rather see the
genetic components hitherto available as templates of future
systems. The large number of genetic markers and a host of
environmental covariates, which require more sophisticated
modelling, will be the driving force for integrating genetic
analysis into the usual analysis of epidemiological data.
Their statement that "flexible programs that allow
sophisticated users to pursue novel models. and variations on
existing models" suggests itself as a flexible language in
established systems. We would like to highlight R system
here. Given the relative recent effort, the amount of
contributed packages it contains is astonishing. The R
system deserves particular attention since it is a result of
collaborative work of many researchers, both academic and
industrial, and portable to many computer systems. It is a
flexible, comprehensive environment for statistical
computing with an object-oriented programming language. It
provides standard formats for data input, documentation and
interface to general statistical package and databases. The
interface to programs in C/C++/Fortran programs makes it
possible to incorporate many stand-alone programs for
genetic data analysis. The contributed packages are not
necessarily limited to statistics but inclusive of other
disciplines such as operations research, sociological
methodologies and so on. Furthermore, standard datasets cctn
be included as benchmarks for new statistical models. The
benefit in educational use has repeatedly been shown [122,
123]. Seeing that the synthesis with the latest computing
machinery in microarray analysis is already a catchword for
biologists due to the development of Bioconductor
(http://www.bioconductor.org), the outreach to man)' aspects
of the analysis from CRAN is invaluable.

A major lim itation of any review of this kind is the broad
scope of the software systems makes it an impossible task.
Fortunately, specific aspects of the software systems such as
missing data analysis [124], multilevel modelling [125,126],
reliability [127], are available. Another limitation is the
shortage of materials on other species [89, 128-130],
although many packages in R are designed for them and the
data fusion could be imminent. We have not covered
packages for gene expression data in R or other platform
such as Genstat [131] and S+ArrayAnalyzer; we expect such
effort will be common in the future and software
consolidation would be achieved. We only show the
feasibility to use databases from these software systems, but
the integration of genetic databases themselves remains to be
achieved (e.g. International Workshop Integrative
Bioinformatics http://www.rothamsted.bbsrc.ac. uk/bab/conf/
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ibiof/). Our focus on the overall picture of genetic analysis of
complex traits and more generally genetic epidemiology, as
well as the computing environment, by no means a sacrifice
of the balance of analytic strategies and development of
computing tools. It is reminiscent of a statement by Morton
[39] "As genetic epidemiology progresses it will reflect
changes in population genetics ...A new balance is being
struck in which the study of contemporary populations
eclipses evolutionary aspects, and mathematical biology
increasingly takes its problems from the expansion of genetic
epidemiology" and that "The cost of training a generation of
researchers to value methods more than hypotheses has yet
to be measured ... Unless the trend toward directed research
is reversed, genetic epidemiology will not be the only
victim," At the very time when genetic epidemiology is
attracting many investigators and spawning a variety of
analytical methods, the demand for inter-disciplinary
synthesis is more important than ever.

Practically, the software consolidation and integrated
genetic analysis entails to direct attention to established
software systems as outlined here, with respect to aspects
such as database capability, graphics, programming ability,
Internet functionality, reliable and comprehensive nu.merical
routines, documentation, use of available codes and
availability. Another important aspect is to test using
benchmark problems. The overlapping functions in these
packages make it possible, e.g. the R package hapassoc and
Stata with probability weight. Indeed, the software systems
considered here have all been using example data to illustrate
their analytical procedures concerning general statistics.
Currently, there is a lack of linkage, e.g. identitiy-by-descent,
routines available on these platforms, along with systematic
power analysis.

To conclude, the wide availability of genomic data, the
need of powerful statistical and computational tools, the
limitation of individual researchers call for coordinated
endeavours and integration with general computing
environment are inevitable. This is a model that largely
mirrors the development of Linux system in general
computing, and R is mostly in line with this. As an
alternative to other commercial systems, R offers the
availability, variety and possibility for doing so. From our
experience, this amount of effort would be less than most
statisticians had previously anticipated. While some time is
required for fully integrated analyses of most of the available
genetic data, there will be exciting development to come and
R is expected to be an important platform for advance.
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