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Abstract
In this short report, we address some practical problems

in performing likelihood-based allelic association analy-

sis of case-control data. Model-free statistics are pro-

posed and their properties assessed by simulation, and

procedures based on permutation tests are described for

marker-marker as well as marker-disease associations. A

memory-efficient algorithm is developed which enables

several highly polymorphic markers to be analysed.
Copyright © 1999 S. Karger AG, Basel

Introduction

Allelic associations refer to both marker-marker and
marker-disease association, for which likelihood methods
based on haplotype frequences have been implemented in
the EH program [1, 2]. For marker-disease association,
EH requires a single-locus disease model, parametrized
by allele frequencies and genotype-specific penetrances
(f0, f1, f2), to be specified.

We have encountered several problems while using EH
in the analysis of real data. Firstly, the contingency table
of genotypes may be very sparse for highly polymorphic
marker loci (such as those in the HLA system) so that the
usual asymptotic chi-squared approximation may be-
come inaccurate. Secondly, the mode of inheritance is
often uncertain for complex diseases, making it uncertain
what parameter values should be specified. Thirdly, al-
though EH can flexibly deal with an arbitrary number of
loci each with an arbitrary number of alleles, in practice
its application is limited by the large memory require-
ment when marker loci are highly polymorphic.

We have written a program to overcome these prob-
lems. The program implements model-free statistics simi-
lar to those in MFLINK [3], with permutation tests to
obtain empirical p values. It also incorporates an algo-
rithm that can be used to reduce the storage requirement
from the counts of all possible combinations of genotypes
to those actually present in the sample.

Test Statistics

For case-control data, EH outputs three log-likeli-
hoods, lnL0, lnL1 and lnL2, which correspond to the
hypotheses H0 (no associations allowed), H1 (marker-
marker but not marker-disease associations allowed), and
H2 (marker-marker and marker-disease associations al-
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lowed). Supposing there are n marker loci, where the ith
locus has ai alleles, the number of parameters for the three
hypotheses are

N0 = ™
i

(ai – 1), N1 = ¶
i

ai – 1 and N2 = 2N1.

i = 1,2,...,n, respectively. A likelihood ratio test for the
presence of marker-disease associations, under the user-
specified genetic model, is given by 2(lnL2 – lnL1), which
is asymptotically chi-squared with N1 degrees of freedom.
This statistics assumes the use-specified model, and is
denoted as T1.

The new program computes four other tests. A statistic
is obtained under a Mendelian recessive model (f0 = f1 = 0,
f2 = 1), which is defined as T2. Similarly a statistic is
obtained under a Mendelian dominant model (f0 = 0, f1 =
f2 = 1), which is defined as T3. In both cases, allele fre-
quencies are calculated from the disease prevalence im-
plied by the user-specified model. These two tests repre-
sent the two extremes of a single-locus Mendelian trans-
mission model.

The T4 statistic is obtained by treating disease allele
frequencies and penetrances as nuisance parameters. To
calculate T4, the case-control option of the EH program is
used as in the calculation of T1, T2, and T3. However,
instead of being fixed at a single set of values, the disease
model parameters are allowed to vary over a certain
range. The maximum log-likelihood ratio statistic over
this range of parameter values is defined as the T4 statis-
tic. As in the ‘model-free’ method for linkage analysis [3],
the disease model parameters are constrained to produce
the population prevalence (K) implied by the user-defined
model, and only certain fully dominant (f1 = f2) and reces-
sive (f0 = f1) models are considered. If the parameter space
is represented in three dimensions as the coordinates (f0,
f1, f2), then the likelihood is evaluated only for disease
models represented by points on the straight lines joining
(0, 0, 1) to (K, K, K) and joining (K, K, K) to = (0, 1, 1).
The program varies f1 from 0 to 1, and calculates both f0

and f2 in terms of f1: if f1 ! K, then f0 = f1, f2 = f1 (K – 1)/K
+ 1, otherwise f2 = f1, f0 = (1 – f1)K/(1 – K). The disease
model is therefore characterized by a single nuisance
parameter, namely f1. The standard method for dealing
with a nuisance parameter, namely to maximize the log-
likelihood over it under both the null and the alternative
hypotheses, is not applicable because the log-likelihood is
independent of f1 under the null hypothesis of linkage
equilibrium. We show by simulation that T4 can be con-
sidered conservatively to have a chi-square with N1 + 1
degrees of freedom. Instead, one can obtain an empirical

Table 1. The five genetic models used to stimulate data

Model f0 f1 f2 p2 K

0.005 0.500 0.5 0.0050 0.005
Rare recessive (RR) 0 0 1 0.0316 0.001
Rare dominant (RD) 0 1 1 0.0005 0.001
Common recessive (CR) 0.005 0.005 0.5 0.1000 0.010
Common dominant (CD) 0.005 0.500 0.5 0.0050 0.010
Minor gene (MG) 0.050 0.200 0.8 0.1300 0.100

significance level T4 by computer-intensive methods (see
below).

The T5 statistic provides a nonparametric test for
homogeneity in allele frequencies between cases and con-
trols. To calculate T5, the EH program is used three times,
once on the cases alone, once on the controls alone, and
once for the cases and controls pooled together. In each
analysis, allele frequencies are estimated and the maxi-
mum log-likelihood calculated. Denoting these maximum
log-likelihoods as lnLcase, lnLcontrol and lnLcombine, T5 is
defined as 2(lnLcase + lnLcontrol – lnLcombine), which is
asymptotically chi-squared with N1 degrees of freedom.

Properties of the Test Statistics [4]

Disease Models
We assume a biallelic disease locus A with alleles A1,

A2 occurring at frequencies p1, p2. The probability of the
disease in an individual with i copies of the A2 allele is
denoted by the penetrance parameter fi, for i = 0, 1, 2. The
population risk of the disease if given by K = f0 p2

1 + 2 f1 p1

p2 + f2 p2
2. We consider 6 different single gene disease

models (table 1), in order to examine the properties of the
tests under a range of conditions.

Probability Model of Marker Genotypes
We consider a marker locus, denoted here as B, with n

alleles. Conditional on an individual’s affection status,
the probability distribution of the individuals’ genotype
at locus B is given by Sham [5]. The overall likelihood of a
sample of cases and controls is the product of such proba-
bilities, one for each observation of an affection status and
the associated genotype at the marker locus.

Data Simulation
Haplotype frequencies were derived from Oudet et al.

[6] on fragile X syndrome. The frequencies of the seven
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Table 2. Mean and standard deviation of
chi-squared statistics from 500 replicates
of 500 cases and 500 controls

Model T1 T2 T3 T4 T5

5.4 (2.9) 6.1 (3.4) 6.0 (3.2) 6.4 (3.5) 6.1 (3.4)
RR 321.9 (33.8) 321.9 (33.8) 239.9 (23.8) 322.0 (33.8) 321.9 (33.8)
RD 108.6 (18.5) 95.4 (17.1) 108.6 (18.5) 108.7 (18.5) 95.4 (17.1)
CR 85.6 (18.7) 77.5 (17.8) 59.5 (13.2) 86.6 (18.8) 77.5 (17.8)
CD 30.5 (10.5) 30.4 (10.6) 31.3 (10.7) 32.1 (10.8) 30.4 (10.6)
MG 31.0 (10.4) 32.0 (10.7) 31.1 (10.3) 32.9 (10.8) 32.0 (10.8)

alleles at DXS548 were 0, 42, 32, 1, 1, 29, 1 on fragile X
chromosome and 2, 117, 23, 1, 1, 15, 2 on normal chro-
mosomes. These conditional probabilities were multi-
plied by the marginal probabilities of the disease alleles
(which are different for different disease models) to give
the joint haplotype frequencies of the marker and disease
loci. For each model, 500 replicate samples of 1,000 sub-
jects (500 cases and 500 controls) and 500 replicate sam-
ples of 10,000 subjects (5,000 cases and 5,000 controls,
data not shown), were simulated in order to investigate
the accuracy of the asymptotic chi-squared distribution as
a function of sample size.

Comparison of Test Statistics
The properties of each statistic under each model were

investigated using the simulated samples. The mean value
of the test statistics over the replicates is an estimator of
its theoretical expectation (which is the sum of the non-
centrality parameter and degree of freedom). This allows
the non-centrality parameter to be estimated. Under the
null hypothesis (H0), the non-centrality parameter should
be 0. A value greater than 0 implies an increase in the
false-positive rate, while a value less than 0 indicates that
the test is conservative. Under an alternative hypothesis,
the non-centrality parameter determines the power of the
test. At 5% significance level, the values of non-centrality
parameter required for 90% power are 17.4 and 18.3, for
6 and 7 degrees of freedom, respectively. Since the non-
centrality parameter is proportional to sample size, the
required sample size can be extrapolated from the non-
centrality parameter estimates for the desired level or
power.

The results are shown in tables 2 and 3. Since DXS548
shows seven alleles in the dataset, we have N1 = 6 and
N2 = 12. Under H0, the empirical means are close to their
theoretical values, with the exception of T1 and T4, which
have empirical means of 5.4 and 6.4 when the theoretical
means are 6 and 7, respectively. T4 was thought to have
an extra degree of freedom because a maximisation over

Table 3. Estimated sample sizes (cases and
controls combined) required for 90% power
at 0.05 significance level

Model T1 T2 T3 T4 T5

56 56 75 59 56
RD 170 195 170 180 195
CR 219 244 325 230 244
CD 712 713 688 729 713
MG 697 671 695 706 670

f1 was conducted in order to obtain the likelihoods assum-
ing marker-disease association. The result indicates that
the asymptotic distribution of T4 is closer to chi-squared
with 6 degrees of freedom than chi-squared with 7 degrees
of freedom. As expected, the empirical means under alter-
native hypotheses from simulated samples of size 10,000
(data not shown) are approximately 10 times the corre-
sponding values from that of size 1,000.

No single test is uniformly most powerful among the 5
tests over all 5 models. T1, which is obtained by specify-
ing the parameters used in the simulation, has the best
performance overall. The powers of T2 and T5 appear to
be equivalent. T4 is more powerful than T5 in some situa-
tions. For minor a gene model, T5 appears to be subsan-
tially more powerful than T4. If T4 were considered to
have a chi-squared distribution with 6 degrees of freedom,
then T4 and T5 would be equally powerful even in this
situation, but then T4 would be slightly anti-conserva-
tive.

The simulation showed that, when the disease model is
unknown, the standard ̄ 2 test of homogeneity of allele fre-
quencies (T5) provides nearly optimal power, especially
for a minor-gene model. If the null distribution of the
parametric ‘model-free’ test (T4) is accurately known,
then this may be preferred to T5. Overall, our preferred
test for routine use on case-control data is the standard ̄ 2
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test of homogeneity of allele frequencies. If one were to
extend this approach to data involving related individu-
als, however, it is likely that parametric ‘model-free’
methods will have a greater degree of superiority over
non-parametric methods.

Permutation Tests

The reliance on asymptotic theory for obtaining signif-
icance levels is potentially problematic for two reasons.
The first is that asymptotic theory may become inaccurate
when the number of possible genotypic combinations is
very large in relation to the sample size. The second is that
the T4 statistic has a complicated distribution. Both these
problems may be overcome by the use of permutation
procedures to obtain empirical p values. An efficient algo-
rithm due to Fisher and Yates, as described in Knuth [7]
and Weir [8], can be adapted to permute case-control
labels and blocks of markers. Here we propose such proce-
dures for both marker-marker and marker-disease asso-
ciations. We have written a C program to implement
these procedures.

Marker-Marker Association
The proposed permutation procedure examines

whether a block of markers is in linkage equilibrium with
a second block of markers. A block may contain several
markers, or just a single marker, as specified by the user.
Denoting the log-likelihood with associations within each
block but independence between blocks as lnL1, and the
log-likelihood with associations between all markers as
lnL2, then the statistic 2(lnL2 – lnL1) provides a test for
linkage disequilibrium between the two blocks of mark-
ers, taking into account possible associations between
markers within the same block. The degrees of freedom of
this test is equal to (h1h2 – 1) – (h1 – 1) – (h2 – 1), where h1

and h2 are the number of haplotypes in blocks 1 and 2,
respectively. This number will be very large if one of both
blocks contain several highly polymorphic markers, so
that for realistic sample sizes the standard chi-squared
approximation may be inaccurate. The proposed permu-
tation procedure randomly reassigns all the genotypes of
block 2 to the genotypes at block 1, preserving allelic asso-
ciations for markers within the same block, but destroying
allelic associations between markers in different blocks.
For each permuted replicate, the statistic 2(lnL2 – lnL1) is
calculated, so that after a large number of replicates an
empirical sampling distribution of the statistic is ob-
tained.

Marker-Disease Association
We simply permute the case-control labels and calcu-

late each of the five test statistics. The test statistics from a
large number of permuted replicate samples are then used
to obtain empirical sampling distributions of the test sta-
tistics under the null hypothesis.

Modifying EH for Highly Polymorphic Loci

Genotype counts are presented to EH in the form of a
2-way contingency table, with each row representing a
possible combination of genotypes at all loci except the
last, and each column representing a genotype at the last
locus. These counts are internally represented as a linear
array, the size of which is

A = ¶
i

ai (ai – 1)
2

,

where ai, i = 1,...,n, is the number of alleles at locus i. In
EH, each genotype combination is indexed by an identi-
fier between 1 and A, and there is a one-to-one correspon-
dence between the identifiers and the combinations of
genotypes, as defined by the linenum function.

The input format and the data representation in EH
have obvious disadvantages for highly polymorphic
markers. An input file has to be prepared from the raw
genotype data, perhaps by using statistical software such
as SAS. These packages tend to omit any row or column
containing only zero counts so that all these rows and col-
umns must be added to the output file to make an input
file for EH. This is easy for an analysis involving two or
three biallelic loci, but extremely tedious for an analysis
involving a greater number of markers or of highly poly-
morphic markers. For instance, with three markers hav-
ing 25, 10, 15 alleles, respectively, the input file will have
17,875 rows and 120 columns, regardless of the size of the
sample. Internally, the storage of these 214,500 counts,
most of which will be 0 for realistic sample sizes, is very
memory inefficient.

To overcome these problems, we first create a simpli-
fied input file for EH. The first line of this file gives the
number of alleles for each locus. Each subsequent line
contains an identifier (which is related to a particular
combination of genotypes by the linenum function), and
the observed counts for cases and controls (the count for
cases being necessarily 0 for a study involving marker
data only). The file can be created easily from a data file
containing the case-control status and genotypes of each
subject, using a ‘search-and-insert’ scheme. The marker
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Fig. 1. Data files required by EH before and
after revision. a The raw data set contains
subject id, case/control label (1 = case, 0 =
control), two biallelic markers mar1 and
mar2. b Data files for EH (case.dat and con-
trol.dat). The first row indicates number of
alleles for markers mar1 and mar2, and the
following rows contain the observed counts
of genotype combinations. c The data file for
the modified program, columns after the
first row are as follows: 1 genotype identifier;
2 count of cases; 3 count of controls. Note
lines with identifiers 1, 3, 7 are omitted.

genotypes of each individual are used to calculate the
identifier; if this identifier is already present in the file,
then the appropriate count (whether case or control) in
that line is increased by 1, otherwise an extra line with
that identifier and count one is inserted. When all obser-
vations have been read, the input file will contain one line
for each combination of genotypes that is present in the
sample. Even if no two individuals have the same combi-
nation of genotypes, the number of lines is still only equal
to the sample size.

We have modified EH to accept this new format. This
is achieved by altering the linenum function in EH to refer
to the appropriate record in the simplified input file.
Whenever EH requires the count of a combination of
genotypes, it computes the associated identifier and a
search is made to get the appropriate information. To
speed up this search, we initially considered a hash table,
indexed by modulo operation on the identifiers with
respect to a moderately large (usually comparable to the
sample size) prime number, a method originally due to
Dumey [9].

However, we then realised we could achieve the same
effect simply by using the array of the observed identifiers
to index the array containing observed genotype counts.
We have found this to be as efficient as the hash table
method. Both options are available in the program.

A schematic representation of the various data files for
an analysis of just 12 individuals is shown in figure 1.

As a by-product of this work, a C version of EH has
been obtained by modifying the output from the p2c utili-
ty. We have also made EH print out the Freeman-Tukey
[10] residuals, as a measure of the discrepancy between
observed and expected counts.

The program implementing the model-free statistics
and the modified EH program, called EHPLUS, are freely
available from the first author (e-mail: j.zhao@iop.kcl.
ac.uk).

Example: Association between Schizophrenia and
HLA Markers
This is a case-control association study of schizophre-

nia (Dr. Padraig Wright, pers. commun.]. Three highly
polymorphic markers DRB, DQA, and DQB in the HLA
region of chromosome 6 were examined in 94 schizo-
phrenic patients and 177 controls. The numbers of rea-
sonably common alleles of these three markers are 25, 10,
and 15, respectively. We were not able to use EH to get the
appropriate log-likelihoods for marker-marker and dis-
ease-marker associations involving all three markers.

For marker-marker association analysis of all three
markers in the overall sample (patients and controls) the
modified EH program computed a log-likelihood of
–3,180.84 under the null hypothesis that the markers are
independent, and –1,594.75 allowing for the presence of
marker-marker associations. The number of free parame-
ters associated with these two hypotheses are 47 and
3,749, respectively. The likelihood ratio chi-squared sta-
tistic for marker-marker association is therefore 2
(3,180.84 – 1,594.75) = 3,172.18, with 3,702 degrees of
freedom. This yields a p value that is close to 1. Yet the p
value based on asymptotic theory for such a large number
of degrees of freedom is quite unreliable.

The likelihood evaluation incorporating all three
markers took several hours to do a single analysis under
DEC Alpha, therefore it would be quite time-consuming
to do permutation test involving all three markers. Here
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we only used DQA in the test and illustrated it with the
case-control option. A recessive model with disease allele
frequency 0.1, penetrances 0.005, 0.005, 0.5 was assumed
[11]. The user-specified, recessive, dominant, model-free
and heterogeneity chi-square statistics are 89.96, 92.90,
57.24, 97.78 and 101.90, respectively, which correspond
to asymptotic p-values smaller than 0.000001 for chi-
squared distribution with degrees of freedom 9 and 10.
With the permutation option none of the 10,000 repli-
cates produced any statistics which exceeded chi-squared
values from the observed data. We thus conclude that
there is association between DQA and schizophrenia
based on the empirical evidence.

Discussion

We have implemented several modifications to EH
which should make it an even more useful program for the
analysis of marker-marker and marker-disease associa-
tion data. The program may be particularly useful for sin-
gle-nucleotide polymorphisms, where it is important to
combine information from several tightly linked loci in
order to increase the power to detect disease-associated
haplotypes. The original EH program implements a maxi-
mum-likelihood approach to the estimation of haplotype
frequencies and the testing of hypotheses concerning allel-
ic associations. The present modifications have simplified
the input data files, increased the number of loci and
alleles that can be handled, provided model-free test sta-
tistics suitable for complex disorders, and given the op-
tion to obtain empirical p values by permutation tests.

The saving in memory requirement is achieved at the
cost of some extra CPU time, and the permutation proce-
dure remains slow for large problems. Further improve-
ments of EH are therefore desirable, possibly in the sense
that the EM algorithm processes data by person at each
iteration, rather than by phenotype. The original geno-
types could alternatively be used as multiple identifiers in
the simplified input file so that output produced by statis-
tical packages could be re-used. For example, the list for-
mat produced by SAS PROC FREQ might be appro-
priate.

We have implemented test statistics which can be used
when the disease model is uncertain. Our results from
simulation studies indicate that a non-parametric test of
heterogeneity of haplotype frequencies (T5) is nearly opti-
mal in most circumstances. Interestingly, this test is also
almost equivalent to a test assuming Mendelian recessive
inheritance (T2).

One issue not addressed by this report is whether it is
desirable to group together certain alleles in order to
reduce the size of the data set and the number of parame-
ters, and possibly to increase power [12, 13]. Another
issue is that with multiple loci, many individuals may
have genotype data for some but not all loci. The present
program discards observations with partially missing
data, and it will be desirable to develop algorithms that
will make full use of all available data.

A number of other programs are also available for allel-
ic association analysis, including 3LOCUS [14], the VAX/
VMS-based HAPLO [15], GDA [8, 16–18] and Arlequin
[19]. We have not explored fully the features of these pro-
grams but none appear to be directly applicable to case-
control data.
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