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Abstract
Linkage disequilibrium (LD) between tightly linked loci
provides fine mapping information of disease-predis-
posing allelic variants. The most common method of LD
analysis involves unrelated cases and controls. We have
previously proposed model-free and permutation tests
for diseases with unknown mode of inheritance that can
be applied to several highly polymorphic loci. However,
performing such analyses remained computer intensive.
In this report we propose a speed-up of both the gene-
counting procedure and the permutation procedure. We
demonstrate the improved method with an analysis of
schizophrenia and human leucocyte antigen markers,
and an analysis of alcoholism and mitochondrial alde-
hyde dehydrogenase markers. Our implementation also
allows the rapid calculation of permutation-based LD
measures and related statistics.

Copyright © 2002 S. Karger AG, Basel

Introduction

Haplotype analysis of unrelated individuals is widely
used for examining linkage disequilibrium (LD) between
a set of marker loci in one or more populations [1–5], for

association studies between a proposed disease locus and
markers [6, 7] and for providing information for family
haplotype analysis [7–10]. Haplotype frequency estima-
tion is commonly achieved by gene counting, which is a
simple form of the EM algorithm [11–16]. Multiple sam-
ples from one or more populations can be subject to a het-
erogeneity analysis [17]. If samples of cases and controls
are involved, then a putative disease locus can also be
incorporated into the analysis, as has been implemented in
the computer program EH (Estimating Haplotypes) [6].

Although the EM algorithm for haplotype frequency
estimation is simple in principle, it must be implemented
efficiently in order to deal with data that involve a large
number of haplotypes and multilocus genotypes. A stan-
dard method of summarising categorical data is to tabu-
late the individuals into a multidimensional contingency
table according to their multilocus genotypes. However,
not only is this computationally inefficient for a large
number of marker loci or any number of highly polymor-
phic loci, because the resulting contingency table will be
very sparse, but the test statistics may not conform to
standard asymptotic distributions.

In a previous report [18], we discussed model-free
analysis and permutation tests for case-control data, and
proposed a modification of the recursive implementation
in EH to handle large problems. We implemented our
method in a C program called EHPLUS. Despite these
improvements, this program remained time consuming; a
single case-control analysis can take minutes or hours.
This restricts the use of permutation tests, which involve
analysing a large number of replicate samples.
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Here we propose a further speed-up of both the gene-
counting and the data preparation procedure. After de-
scribing the proposed speed-ups, we demonstrate the new
method with two analyses: schizophrenia and human leu-
cocyte antigen (HLA) data given in our previous report,
and alcoholism and mitochondrial aldehyde dehydroge-
nase (ALDH2) as reported in Koch et al. [19]. Finally, we
give some general results and a brief discussion.

Methods

Previous Modifications to EH
We use two biallelic markers to illustrate our previous modifica-

tions. Let the alleles of each biallelic marker be 1 and 2, and the geno-
types be 1/1, 1/2, and 2/2. These genotypes are commonly designated
as 1, 2 and 3. A sample of individuals genotyped at these two loci can
then be tabulated into a 3 ! 3 genotype table, with each cell in the
table corresponding to a two-locus genotype. These two-locus geno-
types can be collectively identified with numbers (i –1)*3 + j, where i,
j = 1, 2, 3, are the genotype identifiers at loci 1 and 2. To obtain the
haplotype counts, EH goes through each cell of the 3 ! 3 table. For
large problems, we may expect some cells to have empty counts; such
cells do not contribute to the haplotype counts or the likelihoods.
Figure 1 of Zhao et al. [18] gave an example of 12 individuals geno-
typed at two biallelic loci, the 3 ! 3 genotype table has zero counts
for cells with two-locus genotype identifiers 1, 4, 7, corresponding to
marker genotypes 1/1-1/1, 1/2-1/1, 2/2-1/1.

The method implemented in EHPLUS was to construct a sorted
list for non-empty cells during data preparation, 2, 3, 5, 6, 8 and 9 in
the example, with each item of the list containing a two-locus geno-
type identifier and number of cases and controls associated with it.
This sorted list was achieved by a standard linked list, which is a
dynamic data structure built at run-time, so that a pre-defined con-
stant for list length is not needed. It differs from array representation
in that each item in the list is created when the program is running
and has a pointer to the next item. Starting from an empty list, an
insert or delete operation is performed dynamically by allocating or
de-allocating memory and tuning appropriate pointers. De-alloca-
tion is appropriate when replicate analyses are performed. When
gene counting goes through identifiers 1–9, matches in the list are
located via several search methods. The binary search [20] was first
chosen. To search for a record in a sorted list of records, the middle
record is picked up and its key compared to the key to be searched. If
the middle key is smaller, then we expect our match to be greater than
the middle key so we do another search in the second half; alterna-
tively if the key of the middle record is bigger than our search key we
continue the search in the first half. This comparison is repeated until
either a match is found or no match is found (indicating an empty
cell). As for the current example, EHPLUS used the two-locus geno-
type identifier as the key. The second search method was hashing
[20]. It proceeded by setting up a ‘home bucket’ holding hash keys
obtained from subjecting genotype identifiers to modulo operation to
a prime number, comparable to the sample size and being the num-
ber of home buckets, plus other information such as the number of
cases and controls. Matches were then searched with respect to hash
keys. Any collisions (i.e., more than two records with the same hash
key) were resolved by further binary search. Since the prime number

was fairly large, these hash keys were almost evenly spaced in these
buckets and we expect few collisions. The third method involved set-
ting up a sentinel variable. Since the counting process proceeds
through the genotypes in order, a counter was created to keep track of
the items of the list already used. It either took the value of the coun-
ter (to index the item in the non-empty list to be used for haplotype
count updating), or –1 (a signal to abort haplotype count updating).
In the current example the counter value was initialised to 0. Since
cell 1 had an empty count, the counter remained unchanged, indicat-
ing that no item in the sorted list was used; and the sentinel variable
took value –1. Cell 2 was non-empty so the sentinel variable took
value 0 and the first item of our list was used to update haplotype
counts, and the counter was then increased by 1. The process was
repeated until cell 9, when our counter became 5 and we had
exhausted all the observed data.

Further Speed-Ups
A linked-list is easy to build but slow for insert operation, for the

position of insertion is determined by a sequential search from the
start of the list and iterating through its pointer to next term of the
list. This is now replaced with a more efficient scheme using a tree
structure [20]. A tree is a collection of nodes and edges connecting
them, and beginning from any node in the tree and traversing along
the nodes and edges to another node does not return to the starting
node without using certain edge(s) twice. Drawn top-down, the top
node of the tree is root, and nodes below it are called its children.
Each node of the tree can also have its own children. We have chosen
a binary search tree, with which each node has at most two children,
for it is the simplest yet performs well for our purpose. As permuta-
tion tests involve generating large number of replicates, such an
improvement will have a pronounced effect on computing time.
Finally, permutation of a case-control sample can in principle be
achieved by randomly assigning genotypes to be cases, with the rest
being re-labelled as controls.

Seeing that both searching and sentinel variable method have to
go through all genotypes, some of which are not used, we might be
able to loop over the non-empty cells kept in our sorted list directly.
However, this would not be possible without knowing which marker
genotypes give rise to the current multilocus identifier. Recovering
marker genotypes from the two-locus genotype identifier would be
expensive, yet this suggests we need keep track of the original marker
genotypes as part of the items in the list. Formally, these alleles serve
as the cache for the counting procedure. Returning to our two-locus
example, we now directly iterate over genotype identifiers 2, 3, 5, 6, 8
and 9, their genotypes being 1/1-1/2, 1/1-2/2, 1/2-1/2 and 1/2-2/1,
1/2-2/2, 2/2-1/2, 2/2-2/2 as from the sample. Now, in calculating the
likelihood, empty cells can be discarded since they have no contribu-
tions to the likelihood. The genotypic probabilities associated with
non-empty cells could be done as usual by considering all possible
phases given current haplotype estimates.

A Summary of the New Procedure and Some Further Remarks
We can summarise the proposed changes in a three-step proce-

dure.
Step 1. Build a list of observed multilocus genotypes, the number

of their occurrences, and the genotypes of the individual markers.
Step 2. Loop through each item in the list, use cached alleles to

update counts of haplotype frequencies.
Step 3. Obtain haplotype frequencies and log likelihood and

repeat step 2 until there is no appreciable change in log likelihoods.
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At step 1, individuals with the same multilocus genotype are col-
lapsed together in the binary search tree. Each item in the tree con-
tains the genotype identifier as key, the number of cases and controls,
and the genotypes of the constituent markers, plus a disease pheno-
type if a putative disease locus is incorporated. The genotype identif-
ier for a single locus can be calculated as l + u(u – 1)/2, l ^ u. For
example, an individual with marker genotype 1/11 corresponds to
identifier 1 + 11(11 – 1)/2 = 56). The total number of genotype iden-
tifiers at one locus with a alleles is a(a + 1)/2 (this corrects an error in
Zhao et al. [18]). A multilocus genotype identifier can be built in a
similar manner. The size of the multilocus genotype table is the prod-
uct of genotype identifiers at individual loci. The length of the list is
at most the number of individuals in the sample.

Step 2 is the basic gene-counting procedure that is equivalent to
the EM algorithm. The E-step obtains the probability for each phase
given current haplotype frequency estimates, while the M-step up-
dates the haplotype counts based on these probabilities. If the num-
ber of heterozygous loci in a multilocus genotype is h, then there are
2h–1 possible phases, referring to the 2h–1 possible pairs of haplotypes
which could give rise to the observed genotype. Unlike resorting to a
standard search problem by either binary search or hashing or senti-
nel variable method, under the caching scheme we directly iterate
over the observed genotypes.

We have noticed that the convergence criteria used at step 3 are
almost equivalent to setting appropriate criteria with respect to the
estimated haplotype frequencies as used in EH.

However, for disease marker analysis involving a putative disease
locus, we were not able to get the likelihoods in this manner, despite
many of our examples showed the log likelihoods to be smaller by a
constant quantity and the likelihood ratio statistics to be virtually the
same (analytic details involving one or two loci are available upon
request). While this is a good attempt to model the phenotype-geno-
type relationship, implementing the correct method would make the
calculation slower and less attractive for the permutation procedure.
We therefore keep the simple ̄ 2 test of heterogeneity for case-control
analysis in the current implementation, for this has almost the same
power as an analysis assuming the correct model for an explicit dis-
ease locus [18].

The speed-up allows for a larger number of replicates for the per-
mutation procedure, which can be used to assess information of allel-
ic association from multiple multiallelic markers. Asymptotically,
the log likelihood ratio test statistic of allelic association will have
non-central ¯2 distribution with a non-centrality parameter NÍ,
where N is the number of subjects and Í is the overall measure of
deviation from random association. The log likelihood ratio test sta-
tistic from the observed data, here denoted as t, will have mean and
f + NÍ variance 2(f +2 NÍ), with f being its degrees of freedom. Let the
mean and variance of the likelihood ratio test statistic from its empir-
ical distribution obtained by permutation be Ì and Û2, the LD mea-
sure as proposed in Zhao et al. [21] is estimated from replicate sam-
ples as Í̂ = √2f [(t – Ì)/Û]/N. This measure uses the scaled standar-
dised difference of observed log likelihood ratio test statistic and its
empirical mean without heavy reliance on asymptotic result. The
sample variance of Í̂, 2(f + 2NÍ̂)/N2, can be used to construct confi-
dence intervals. For a set of markers from a chromosome segment,
we can also use the measure to examine variations of LD on different
marker subsets [22], as will be illustrated below.

Example and Application

We illustrate the new method with two analyses. The
first is a re-analysis of the HLA data set in Zhao et al. [18]
which demonstrates the relative performance of the dif-
ferent schemes of gene counting described above. The sec-
ond analysis illustrates extraction of LD information
from the likelihoods of permutation replicates. We used
the same set-up as EH for both examples.

Example 1: Association between Schizophrenia and
HLA Markers
HLA markers are located in a gene-rich region on chro-

mosome 6. In Zhao et al. [18], markers DRB, DQA and
DQB were used for allelic association in a study of 94
schizophrenic patients and 177 controls. Markers DRB,
DQA and DQB were supposed to have 25, 10 and 15
alleles. One patient with incomplete genotypes was left
out from the analysis. While potentially there are
2,145,000 possible three-locus genotypes, only 163 of
them were actually observed in the sample.

Three hypotheses of allelic association were consid-
ered. H0: No association between three markers so that
haplotype frequencies are simply the equilibrium fre-
quencies, being the products of frequencies from constitu-
ent alleles. Each locus therefore contributes number of
alleles-1 free parameter(s), and the total number of free
parameters is equal to the sum of the contributions from
all loci (including the disease locus). H1: Association
between markers but not with disease locus. The number
of free parameters is now the number of haplotypes-1. H2:
Both markers and disease locus are associated. The num-
ber of free parameters is twice the number of haplotypes-
2. In the sample, DRB and DQA had only 24 and 9 alleles,
respectively, so that number of free parameters for the
three hypotheses was adjusted accordingly. These are giv-
en as (24 – 1) + (9 – 1) + (10 – 1) = 40, (24)(9)(15) – 1 =
3,239, and (2)(24)(9)(15) – 2 = 6,478. We also obtained
heterogeneity statistics between cases and controls as in
Zhao et al. [18]: –2(log likelihood[cases + controls] – log
likelihood[controls] – log-likelihood[cases]), which has
(24)(9)(15) = 3,239 degrees of freedom.

The original analysis was conducted on DEC Alpha
and Sun SPARC stations, which were comparable in
speed with a Pentium 500 HMz PC with 256 MB memory
running MicroSoft Windows 98. A comparison of differ-
ent implementations is given in table 1. As our original
interests were to conduct case-control analysis involving
all three markers, this was extensively tested for different
search methods. Assuming a disease allele frequency of
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Table 1. A comparison of different implementations for HLA data

Type of analysis Platform Method Time

explicit disease model
Single analysis DEC Alpha, Sun

SPARC station, or
Pentium 500MHz PC

binary search 3–4 days

DEC Alpha hashing 4 h
Pentium 500MHz PC sentinel

variable
36 min

Pentium 500MHz PC caching 6 min
10,000
permutations

Pentium 500MHz PC caching 15 min

Marker-marker analysis 10,000 permutations Pentium 500MHz PC caching 23 min

0.1 and penetrances of 0.005, 0.005, 0.5 [23], the log like-
lihoods under H2 and H1 were –1518.48 and –1594.75,
respectively, yielding a log likelihood ratio ̄ 2 statistic test-
ing H2 against H1 of 152.54 (nominally on 6,478 – 3,239
degrees of freedom). As the log likelihoods thus obtained
were model-dependent and asymptotic ¯2 approximation
was probably unreliable, we used a heterogeneity statistic
and our new implementation for 10,000 permutations.
The heterogeneity statistic was 196.83 with 3,239 degrees
of freedom, giving a p value of near 1.0 based on asymp-
totic theory, yet none of these replicates yielded a hetero-
geneity statistic as extreme as 196.83. The estimated
empirical p value was therefore less than 0.00001 (i.e. 1/
10,000). log likelihoods without correction under H2 and
H1 were –1949.00 and –2,025.26, respectively leading to
a likelihood ratio ¯2 statistic 152.52. With respect to H1
and H0 we obtained a log-likelihood ratio test statistic of
3172.18 from the combined data of cases and controls
involving three markers, with 3,199 degrees of freedom.
To obtain a nominal p value we invoked a permutation
procedure with 10,000 replicates, and none of the per-
muted samples yielded any test statistic value as extreme
as 3,172.18, suggesting that the result is at least significant
at level 0.00001.

Example 2: Association between Alcoholism and
ALDH2 Region
The ALDH2 locus is located on chromosome 12 and

plays an important role in ethanol metabolism. In oriental
populations, ALDH2 exists in two forms that differ in
activity due to a G → A mutation in exon XII resulting in
a lysine-for-glutamine substitution. Our study was con-
ducted to examine association between alcoholism and
alleles of several simple sequence repeat polymorphisms
and a single nucleotide polymorphism in the ALDH2

region. The sample consisted of 130 alcoholics and 136
controls. Six microsatellite markers and two single nu-
cleotide polymorphisms were genotyped in the ALDH2
region: D12S2070, D12S839, D12S821, D12S1344,
EXON XII, EXON1, D12S2263, D12S1341; the number
of alleles at these loci were 8, 8, 13, 14, 2, 2, 13, 10. The
physical distances (in base pairs) of these polymorphisms,
relative to EXON XII, are as follows.

1450,000, 1450,000, F400,000, 83,853, 0, 37,335, 38,927,
1450,000

Both single marker and haplotype analyses revealed
strong disequilibria in this region. Haplotype analysis
gave stronger evidence than single marker analysis. Per-
mutation tests usually provided smaller p values than
asymptotic results. Here we repeated part of the analysis
on two markers on either side of the functional locus
EXON XII to obtain permutation-based LD measures, as
our interests were in detection of a functional gene using
LD on the premise that we do not a priori know the func-
tional locus. They were conveniently numbered 1, 2, 3, 4
and all subsets they formed are listed as follows.

I 12 D12S821-D12S1344
II 13 D12S821-EXON1
III 14 D12S821-D12S2263
IV 23 D12S1344-EXON1
V 24 D12S1344-D12S2263
VI 34 EXON1-D12S2263
VII 123 D12S821-D12S1344-EXON1
VIII 124 D12S821-D12S1344-D12S2263
IX 134 D12S821-EXON1-D12S2263
X 234 D12S1344-EXON1-D12S2263
XI 1234 D12S821-D12S1344-EXON1-D12S2263

The results are shown in table 2. It is interesting that
for two-locus sets, LD estimates are usually between 0 and
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Table 2. All-subset LD measures for
D12S821-D12S1344-EXON1-D12S2263 Subset Permutation-based LD measures

case only

Í̂ SE

controls only

Í̂ SE

cases + controls

Í̂ SE

heterogeneity

Í̂ SE

I 1.55 0.27 0.93 0.22 1.33 0.17 0.20 0.11
II 0.53 0.15 0.54 0.16 0.58 0.11 0.06 0.05
III 0.35 0.16 0.32 0.18 0.36 0.11 0.39 0.12
IV 0.99 0.20 0.77 0.18 0.92 0.13 0.05 0.04
V 0.73 0.20 0.24 0.16 0.51 0.12 0.33 0.11
VI 0.86 0.18 0.57 0.16 0.77 0.12 0.21 0.07

Three-locus set
VII 3.47 0.43 2.66 0.40 3.26 0.29 0.19 0.15
VIII 3.92 0.63 2.80 0.61 3.77 0.42 0.79 0.35
IX 1.74 0.33 1.28 0.35 1.82 0.24 0.40 0.16
X 2.85 0.39 2.03 0.36 2.53 0.25 0.55 0.16

Four-locus set
XI 7.92 0.94 6.72 0.99 8.38 0.66 1.10 0.52

Í̂ = Permutation-based global LD measure; SE = standard error of Í̂.

1, being slightly larger in cases than in controls. For three-
locus and four-locus sets LD tends to be stronger in
cases than in controls. The heterogeneity LD measure
and its sample variance were also calculated from Í̂ =
√2f [(t – Ì)/Û]/N and (2f + 2NÍ̂)/N2, where t is now the
sample heterogeneity statistic similar to example 1 and f
its degrees of freedom, while Ì and Û2 are the mean and
variance of the test statistic from replicate samples. The
heterogeneity LD measure might be conceived as a mea-
sure of effective size for discrepancy of case-control haplo-
type frequencies, given that association is detected in both
cases and controls.

Discussion

We describe the effect of using a more efficient algo-
rithm, based on genotype caching, in haplotype analysis
of unrelated individuals. We also present a faster imple-
mentation for providing data to the algorithm. Both
improvements make the permutation-based methods
more feasible. We also implemented the permutation-
based disequilibrium measure [21].

Binary search trees have been described in Zaykin et
al. [24] and the caching method in linkage analysis has
been described in Cottingham et al. [25]. Binary search
normally has complexity of order O(log(N)) (N being the
number of items), but is very slow for the whole analysis.

Hashing has an order of O(1), but uses more computer
memory. Linked list is easy to build but slower than
search trees, a factor becoming important when the sam-
ple size is large or replicate analyses are necessary. Binary
search trees roughly also have order of O(log(N)) for N
individuals with complete genotypic information. As the
pattern of multilocus genotypes for individuals is usually
irregular, if not totally random, a binary search tree would
suffice. This avoids the need to consider more sophisti-
cated data structures such as skip lists [26] and balanced
trees [20]. Since our proposal in EHPLUS was to use per-
mutation tests and each permutation generated a new set
of individuals, the improvement would have significant
effect when the number of replicates is large. The speed-
up via a caching scheme was achieved by significant
reduction of the number of loops, as in the first example
application the potential number of loops changed from
2,145,000 to 163.

The improvements described here would increase the
size of problems that can be analysed for case-control
association using permutation methods. Nevertheless, the
computational demands for very large problems may
remain daunting. For example, the alcoholism and
ALDH2 data involve 8 ! 8 ! 13 ! 13 ! 14 ! 2 ! 2 !
10 = 6,056,960 possible haplotypes and 8(8 + 1) 8(8 + 1)
13(13 + 1) 13(13 + 1) 14(14 + 1) 2(2 + 1) 2(2 + 1) 10(10 +
1)/28 possible genotypes, a method for efficiently dealing
with very rare haplotypes is then desirable. Although we
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have chosen to compare our implementations using prac-
tical examples, the differences are actually clear in terms
of their complexities. Let M and N be numbers of possible
and observed genotypes, h be the maximum number of
heterozygotes for these genotypes. For the previous proce-
dure, the complexity was dominated by both M and
O(N2h) while the new procedure is O(N2h) only. Not only
M is large relative to N, but also previous methods
involve search through such a large array or use of a senti-
nel to keep track of the genotypes. In general, the number
of multiply heterozygous markers would depend on their
heterozygosities and the underlying haplotype patterns.
We expect our implementation will be appropriate for
problems of moderate size, and the Markov chain Monte
Carlo approach is an important alternative for very large
problems [27–29].

A program that incorporates the current implementa-
tion is freely available from the first author (E-Mail:
j.zhao@iop.kcl.ac.uk) or our website (http://www.iop.kcl.
ac.uk/IoP/Departments/PsychMed/GEpiBSt/software.
stm).
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