Peptide analysis
CSD3 directory
/rds/project/jmmh2/rds-jmmh2-projects/Caprion_proteomics/analysis/
Scripts and results
The project directory above contains scripts at peptide_progs/ and results results at peptide/, respectively.
These are also a set of scripts called from bash
which invokes SLURM jobs.
Script name | Description | Protein-specific error/output |
---|---|---|
Association analysis | ||
1_pgwas.sh | Association analysis | {protein}.e / {protein}.o |
2_meta_analysis.sh | Meta-analysis | {protein}-METAL_{SLURM_job_id}_{phenotype_number}.e / {protein}-METAL_{SLURM_job_id}_{phenotype_number}.o |
Signal identification (see {protein}/sentinels/slurm) | ||
setup.sh | Environmental variables | |
3.1_extract.sh | Signal extraction | _step1_{SLURM_job_id}_{phenotype_number}.e / _step1_{SLURM_job_id}_{phenotype_number}.o |
3.2_collect.sh | Signal collection/classification | _step2_{protein}.e / _step2_{protein}.o |
3.3_plot.sh | Forest, Q-Q, Manhattan, LocusZoom, mean-by-genotype/dosage plots | _step3_{SLURM_job_id}_{phenotype_number}.e / _step3_{SLURM_job_id}_{phenotype_number}.o |
utils.sh | Various utitlties |
Specfic prerequistes for a Manhattan/peptide association plot are
- a call to vep_annotate functino in
3.2_collect.sh
for proteins. - a call to
bgz()
(inutils.sh
for protein) for a indexed and compressed DR-filtered data. - for step 3.2,
ceuadmin/ensembl-vep/111-icelake
now is the default since partitionicelake-himem
is used instead ofcclake
(CentOS 7) which hasceuadmin/ensembl-vep/104
. - module
ceuadmin/R/4.4.1-icelake
now works as smoothly as the oldceuadmin/R
atcclake
Script name | Description | Protein-specific error/output |
---|---|---|
Experimental codes | ||
mz.* | file handling & MetaMorpheus, MSAmanda. | mzML and results in */metamorpheus, msamonda |
crux.* | search, R/multicomp+crux benchmark | crux/ |
BoxCar.py/pyteomics.py | BoxCar algorighm and its use |
The module mono-5.10.0.78-gcc-5.4.0-c6cq4hh
is required for rawrr
, to ${HOME}/.cache/R/rawrr/rawrrassembly
(4/8/2024).
File | Size |
---|---|
eula.txt | 163 |
rawrr.exe | 28672 |
ThermoFisher.CommonCore.BackgroundSubtraction.dll | 44544 |
ThermoFisher.CommonCore.Data.dll | 406016 |
ThermoFisher.CommonCore.MassPrecisionEstimator.dll | 11264 |
ThermoFisher.CommonCore.RawFileReader.dll | 654336 |
Finally, ceumadin/FragPipe/22.0
is available as a GUI for experiments on various worflows.
Glossary
The atomic mass unit (dalton) is equal to the mass of one-twelvth of the mass of a \(^{12}C\) atom (\(1.660 540 2 \times 10^{-27}\)g).
References
Bittremieux W, Levitsky L, Pilz M, Sachsenberg T, Huber F, Wang M, Dorrestein PC. Unified and standardized mass spectrometry data processing in Python using spectrum_utils. J Proteome Res 22:625–631 (2023), https://doi.org/10.1021/acs.jproteome.2c00632, https://spectrum-utils.readthedocs.io/en/latest/.
Eidhammer I, Flikka K, Martens L, Mikalsen S-O. Computational Methods for Mass Spectrometry Proteomics. Wiley, 2007. ISBN: 978-0-470-51297-5
fragpipe.nesvilab.org, https://fragpipe.nesvilab.org/
Hasam S, Emery K, Noble WS, Keich U. A Pipeline for Peptide Detection Using Multiple Decoys. Methods Mol Biol 2023;2426:25-34, doi: 10.1007/978-1-0716-1967-4_2.
Kertesz-Farkas A, Nii Adoquaye Acquaye FL, Bhimani K, Eng JK, Fondrie WE, Grant C, Hoopmann MR, Lin A, Lu YY, Moritz RL, MacCoss MJ, Noble WS. The Crux Toolkit for Analysis of Bottom-Up Tandem Mass Spectrometry Proteomics Data. J Proteome Res 2023;22(2):561-569, https://doi.org/10.1021/acs.jproteome.2c00615, https://crux.ms.
Lazear MR. Sage: An Open-Source Tool for Fast Proteomics Searching and Quantification at Scale. J Proteome Res 2023 22 (11), 3652-3659, DOI: 10.1021/acs.jproteome.3c00486.
Levitsky LI, Klein JA, Ivanov MV, Gorshkov MV. Pyteomics 4.0: Five Years of Development of a Python Proteomics Framework. J Proteome Res. 2019;18(2):709-714. doi: 10.1021/acs.jproteome.8b00717, https://github.com/levitsky/pyteomics.
ms-utils.org, https://ms-utils.org/.
Rehfeldt TG, Gabriels R, Bouwmeester R, Gessulat S, Neely BA, Palmblad M, Perez-Riverol Y, Schmidt T, Vizcaíno JA, Deutsch EW. ProteomicsML: An Online Platform for Community-Curated Data sets and Tutorials for Machine Learning in Proteomics. J Proteome Res, 2023;22(2):632-636, https://doi.org/10.1021/acs.jproteome.2c00629, https://proteomicsml.org/.
Sturm M, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O. OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics. 2008;9:163. doi: 10.1186/1471-2105-9-163.