Skip to contents

Given harmonised data, this function conducts a two-sample MR analysis.

Usage

run_TwoSampleMR(TwoSampleMRinput, mr_plot = "None", prefix = "")

Arguments

TwoSampleMRinput

Harmonised data.

mr_plot

one of "None", "TwoSampleMR", "pQTLtools" for no, the original and the revised plots, respectively.

prefix

a prefix for output files.

Value

No value is returned but several files.

Details

As TwoSampleMR faces seemingly perplexing options, this function intends to simplify various steps in a two-sample MR as in dt18;textualpQTLtools. It is particularly useful when a large numbher of MRs are necessary, e.g., multiple proteins and their cis/trans regions need to be examined, in which case prefix could direct the output to various directories.

Check your authentication token if the example below fails to run.

References

Examples

suppressMessages(require(dplyr))
prot <- "MMP.10"
type <- "cis"
f <- paste0(prot,"-",type,".mrx")
d <- read.table(file.path(find.package("pQTLtools",lib.loc=.libPaths()),"tests",f),
                header=TRUE)
exposure <- TwoSampleMR::format_data(within(d,{P=10^logP}), phenotype_col="prot", snp_col="rsid",
                                     chr_col="Chromosome", pos_col="Posistion",
                                     effect_allele_col="Allele1", other_allele_col="Allele2",
                                     eaf_col="Freq1", beta_col="Effect", se_col="StdErr",
                                     pval_col="P", log_pval=FALSE,
                                     samplesize_col="N")
clump <- exposure[sample(1:nrow(exposure),nrow(exposure)/80),] # TwoSampleMR::clump_data(exposure)
# outcome <- TwoSampleMR::extract_outcome_data(snps=exposure$SNP,outcomes="ebi-a-GCST007432")
outcome <- pQTLtools::import_OpenGWAS("ebi-a-GCST007432","11:102090035-103364929","gwasvcf") %>%
           as.data.frame() %>%
           dplyr::mutate(outcome="FEV1",LP=10^-LP) %>%
           dplyr::select(ID,outcome,REF,ALT,AF,ES,SE,LP,SS,id) %>%
           setNames(c("SNP","outcome",paste0(c("other_allele","effect_allele","eaf","beta","se",
                                               "pval","samplesize","id"),".outcome")))
#> [1] "https://gwas.mrcieu.ac.uk/files/ebi-a-GCST007432/ebi-a-GCST007432.vcf.gz"
unlink("ebi-a-GCST007432.vcf.gz.tbi")
harmonise <- TwoSampleMR::harmonise_data(clump,outcome)
#> Harmonising MMP.10 (ImbABK) and FEV1 (ebi-a-GCST007432)
prefix <- paste(prot,type,sep="-")
pQTLtools::run_TwoSampleMR(harmonise, mr_plot="pQTLtools", prefix=prefix)
#> Analysing 'ImbABK' on 'ebi-a-GCST007432'

#> Warning: Removed 1 row containing missing values or values outside the scale range (`geom_errorbarh()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).


#> Warning: Removed 1 row containing missing values or values outside the scale range (`geom_errorbarh()`).
#> Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).

caption <- "Table. MMP.10 variants and FEV1"
knitr::kable(read.delim(paste0(prefix,"-result.txt"),header=TRUE),
             caption=paste(caption, "(result)"))
#> 
#> 
#> Table: Table. MMP.10 variants and FEV1 (result)
#> 
#> |id.exposure |id.outcome       |outcome |exposure |method                    | nsnp|        b|      se|  pval|
#> |:-----------|:----------------|:-------|:--------|:-------------------------|----:|--------:|-------:|-----:|
#> |ImbABK      |ebi-a-GCST007432 |FEV1    |MMP.10   |MR Egger                  |   11|  0.00883| 0.02618| 0.744|
#> |ImbABK      |ebi-a-GCST007432 |FEV1    |MMP.10   |Weighted median           |   11|  0.00156| 0.01176| 0.895|
#> |ImbABK      |ebi-a-GCST007432 |FEV1    |MMP.10   |Inverse variance weighted |   11| -0.00365| 0.00836| 0.662|
#> |ImbABK      |ebi-a-GCST007432 |FEV1    |MMP.10   |Simple mode               |   11|  0.00866| 0.01998| 0.674|
#> |ImbABK      |ebi-a-GCST007432 |FEV1    |MMP.10   |Weighted mode             |   11|  0.01204| 0.01875| 0.535|
knitr::kable(read.delim(paste0(prefix,"-heterogeneity.txt"),header=TRUE),
             caption=paste(caption,"(heterogeneity)"))
#> 
#> 
#> Table: Table. MMP.10 variants and FEV1 (heterogeneity)
#> 
#> |id.exposure |id.outcome       |outcome |exposure |method                    |    Q| Q_df| Q_pval|
#> |:-----------|:----------------|:-------|:--------|:-------------------------|----:|----:|------:|
#> |ImbABK      |ebi-a-GCST007432 |FEV1    |MMP.10   |MR Egger                  | 7.97|    9|  0.537|
#> |ImbABK      |ebi-a-GCST007432 |FEV1    |MMP.10   |Inverse variance weighted | 8.22|   10|  0.607|
knitr::kable(read.delim(paste0(prefix,"-pleiotropy.txt"),header=TRUE),
             caption=paste(caption,"(pleiotropy)"))
#> 
#> 
#> Table: Table. MMP.10 variants and FEV1 (pleiotropy)
#> 
#> |id.exposure |id.outcome       |outcome |exposure | egger_intercept|     se|  pval|
#> |:-----------|:----------------|:-------|:--------|---------------:|------:|-----:|
#> |ImbABK      |ebi-a-GCST007432 |FEV1    |MMP.10   |        -0.00156| 0.0031| 0.627|
knitr::kable(read.delim(paste0(prefix,"-single.txt"),header=TRUE),
             caption=paste(caption,"(single)"))
#> 
#> 
#> Table: Table. MMP.10 variants and FEV1 (single)
#> 
#> |exposure |outcome |id.exposure |id.outcome       | samplesize|SNP                             |         b|      se|     p|
#> |:--------|:-------|:-----------|:----------------|----------:|:-------------------------------|---------:|-------:|-----:|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs12418070                      | -0.032669| 0.02311| 0.157|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs12807063                      |  0.011429| 0.03238| 0.724|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs17098913                      |  0.018028| 0.01972| 0.361|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs17099562                      |  0.014941| 0.03349| 0.655|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs17860942                      |  0.000563| 0.03151| 0.986|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs17860975                      |  0.009259| 0.03056| 0.762|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs2186602                       |  0.034356| 0.02822| 0.223|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs2671375                       | -0.052478| 0.03499| 0.134|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs4559658                       | -0.009709| 0.03689| 0.792|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs76344628                      | -0.019860| 0.02103| 0.345|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs7926065                       | -0.023011| 0.03356| 0.493|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|All - Inverse variance weighted | -0.003653| 0.00836| 0.662|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|All - MR Egger                  |  0.008831| 0.02618| 0.744|
knitr::kable(read.delim(paste0(prefix,"-loo.txt"),header=TRUE),
             caption=paste(caption,"(loo)"))
#> 
#> 
#> Table: Table. MMP.10 variants and FEV1 (loo)
#> 
#> |exposure |outcome |id.exposure |id.outcome       | samplesize|SNP        |         b|      se|     p|
#> |:--------|:-------|:-----------|:----------------|----------:|:----------|---------:|-------:|-----:|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs12418070 |  0.000711| 0.00896| 0.937|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs12807063 | -0.004729| 0.00865| 0.585|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs17098913 | -0.008397| 0.00922| 0.363|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs17099562 | -0.004887| 0.00863| 0.571|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs17860942 | -0.003972| 0.00867| 0.647|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs17860975 | -0.004696| 0.00869| 0.589|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs2186602  | -0.007304| 0.00875| 0.404|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs2671375  | -0.000700| 0.00860| 0.935|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs4559658  | -0.003325| 0.00858| 0.698|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs76344628 | -0.000615| 0.00910| 0.946|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|rs7926065  | -0.002374| 0.00863| 0.783|
#> |MMP.10   |FEV1    |ImbABK      |ebi-a-GCST007432 |     321047|All        | -0.003653| 0.00836| 0.662|
for (x in c("result","heterogeneity","pleiotropy","single","loo"))
    unlink(paste0(prefix,"-",x,".txt"))