Manhattan plots
Usage
turboman(
input_data_path,
custom_peak_annotation_file_path,
reference_file_path,
pvalue_sign,
plot_title,
vertical_resolution = 1800
)
Arguments
- input_data_path
Path of the input association data.
- custom_peak_annotation_file_path
Path of the custom annotation of variants.
- reference_file_path
Path to the 'turboman_hg19_reference_data.rda' / 'turboman_hg19_reference_data.rda' reference file.
- pvalue_sign
Significance threshold p-value.
- plot_title
Plot title which will be displayed on top of the plot.
- vertical_resolution
A fixed number of points (pixels) to be plotted vertically.
Details
Input association data file / input_data_path
Define the path of the input association data. The input data needs to be a file that has:
Spaces as field separators.
One header line.
Option I. (no extreme p-values present): 3 columns, being chromosome, position, pvalue in order, column names are not important. Option II. (extreme p-values present): 5 columns, being chromosome, position, pvalue, beta, se in order, column names are not important.
Custom annotation file / custom_peak_annotation_file_path
Define the path of the custom annotation of variants. The input data needs to be a file that has:
Spaces / tabs as field separators.
One header line with exact column names (order not important).
Columns: chromosome, position, label (e.g., gene name) / nearest_gene_name, cis/trans flag (optional). NB!: If no label is given, variants will be automatically annotated
Reference file / reference_file_path
Define the path to the 'turboman_hg19_reference_data.rda' / 'turboman_hg38_reference_data.rda' reference file that
contains the LD block breaks as in berisa16;textualpQTLtools
and gene coordinates used to construct and annotate the Manhattan plot. Both
are available from the turboman
directory of the installed package, e.g.,
file.path(find.package('pQTLtools'),'turboman','turboman_hg38_reference_data.rda')
.
Significance threshold p-value / pvalue_sign
Define the significance threshold. This will be used to
Highlight signal peaks that come above this significance threshold.
Annotate the nearest gene to the top signal in the peak.
Draw a horizontal reference line equal to this threshold.
Title of the plot / plot_title
Define title on top of the plot.
Number of pixels on vertical axis / vertical_resolution
Define a fixed number of points (pixels) on vertical axis.
Author
Arthur Gilly, Chris Finan, Bram Prins, see https://github.com/bpprins/turboman.
Examples
if (FALSE) { # \dontrun{
# Screen output
require(gap.datasets)
test <- mhtdata[c('chr','pos','p')]
write.table(test,file='test.txt',row.names=FALSE,quote=FALSE)
annotate <- subset(mhtdata[c('chr','start','gene','p')],p<5e-8 & gene!='')
names(annotate) <- c('chromosome','position','nearest_gene_name','p')
write.table(unique(annotate[,-4]),file='annotate.txt',row.names=FALSE,quote=FALSE)
input_data_path <- 'test.txt'
custom_peak_annotation_file_path <- 'annotate.txt'
reference_file_path <- file.path(find.package('pQTLtools',lib.loc=.libPaths()[1]),
'turboman','turboman_hg19_reference_data.rda')
pvalue_sign <- 5e-8
plot_title <- 'gap.datasets example'
turboman(input_data_path, custom_peak_annotation_file_path,
reference_file_path, pvalue_sign, plot_title)
# Figure shown on https://github.com/jinghuazhao/tests/tree/main/turboman
png('IL12B.png',width=3600, height=3600, pointsize = 12, res=450)
input_data_path <- 'IL.12B.txt.gz'
custom_peak_annotation_file_path <- 'IL.12B.annotate'
reference_file_path <-
file.path(find.package('pQTLtools'),'turboman','turboman_hg19_reference_data.rda')
pvalue_sign <- 5e-8
plot_title <- 'IL12B'
turboman(input_data_path, custom_peak_annotation_file_path,
reference_file_path, pvalue_sign, plot_title)
dev.off()
} # }